Metamath Proof Explorer


Theorem ovolshftlem2

Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)

Ref Expression
Hypotheses ovolshft.1 ( 𝜑𝐴 ⊆ ℝ )
ovolshft.2 ( 𝜑𝐶 ∈ ℝ )
ovolshft.3 ( 𝜑𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥𝐶 ) ∈ 𝐴 } )
ovolshft.4 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) }
Assertion ovolshftlem2 ( 𝜑 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ 𝑀 )

Proof

Step Hyp Ref Expression
1 ovolshft.1 ( 𝜑𝐴 ⊆ ℝ )
2 ovolshft.2 ( 𝜑𝐶 ∈ ℝ )
3 ovolshft.3 ( 𝜑𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥𝐶 ) ∈ 𝐴 } )
4 ovolshft.4 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) }
5 1 ad3antrrr ( ( ( ( 𝜑𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ran ( (,) ∘ 𝑔 ) ) → 𝐴 ⊆ ℝ )
6 2 ad3antrrr ( ( ( ( 𝜑𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ran ( (,) ∘ 𝑔 ) ) → 𝐶 ∈ ℝ )
7 3 ad3antrrr ( ( ( ( 𝜑𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ran ( (,) ∘ 𝑔 ) ) → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥𝐶 ) ∈ 𝐴 } )
8 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) )
9 2fveq3 ( 𝑚 = 𝑛 → ( 1st ‘ ( 𝑔𝑚 ) ) = ( 1st ‘ ( 𝑔𝑛 ) ) )
10 9 oveq1d ( 𝑚 = 𝑛 → ( ( 1st ‘ ( 𝑔𝑚 ) ) + 𝐶 ) = ( ( 1st ‘ ( 𝑔𝑛 ) ) + 𝐶 ) )
11 2fveq3 ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑔𝑚 ) ) = ( 2nd ‘ ( 𝑔𝑛 ) ) )
12 11 oveq1d ( 𝑚 = 𝑛 → ( ( 2nd ‘ ( 𝑔𝑚 ) ) + 𝐶 ) = ( ( 2nd ‘ ( 𝑔𝑛 ) ) + 𝐶 ) )
13 10 12 opeq12d ( 𝑚 = 𝑛 → ⟨ ( ( 1st ‘ ( 𝑔𝑚 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔𝑚 ) ) + 𝐶 ) ⟩ = ⟨ ( ( 1st ‘ ( 𝑔𝑛 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔𝑛 ) ) + 𝐶 ) ⟩ )
14 13 cbvmptv ( 𝑚 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑔𝑚 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔𝑚 ) ) + 𝐶 ) ⟩ ) = ( 𝑛 ∈ ℕ ↦ ⟨ ( ( 1st ‘ ( 𝑔𝑛 ) ) + 𝐶 ) , ( ( 2nd ‘ ( 𝑔𝑛 ) ) + 𝐶 ) ⟩ )
15 simplr ( ( ( ( 𝜑𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ran ( (,) ∘ 𝑔 ) ) → 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
16 elovolmlem ( 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
17 15 16 sylib ( ( ( ( 𝜑𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ran ( (,) ∘ 𝑔 ) ) → 𝑔 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
18 simpr ( ( ( ( 𝜑𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ran ( (,) ∘ 𝑔 ) ) → 𝐴 ran ( (,) ∘ 𝑔 ) )
19 5 6 7 4 8 14 17 18 ovolshftlem1 ( ( ( ( 𝜑𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ran ( (,) ∘ 𝑔 ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ 𝑀 )
20 eleq1a ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ∈ 𝑀 → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) → 𝑧𝑀 ) )
21 19 20 syl ( ( ( ( 𝜑𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ 𝐴 ran ( (,) ∘ 𝑔 ) ) → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) → 𝑧𝑀 ) )
22 21 expimpd ( ( ( 𝜑𝑧 ∈ ℝ* ) ∧ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧𝑀 ) )
23 22 rexlimdva ( ( 𝜑𝑧 ∈ ℝ* ) → ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧𝑀 ) )
24 23 ralrimiva ( 𝜑 → ∀ 𝑧 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧𝑀 ) )
25 rabss ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ 𝑀 ↔ ∀ 𝑧 ∈ ℝ* ( ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) → 𝑧𝑀 ) )
26 24 25 sylibr ( 𝜑 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ 𝑀 )