| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pf1rcl.q |
|- Q = ran ( eval1 ` R ) |
| 2 |
|
pf1addcl.a |
|- .+ = ( +g ` R ) |
| 3 |
|
eqid |
|- ( R ^s ( Base ` R ) ) = ( R ^s ( Base ` R ) ) |
| 4 |
|
eqid |
|- ( Base ` ( R ^s ( Base ` R ) ) ) = ( Base ` ( R ^s ( Base ` R ) ) ) |
| 5 |
1
|
pf1rcl |
|- ( F e. Q -> R e. CRing ) |
| 6 |
5
|
adantr |
|- ( ( F e. Q /\ G e. Q ) -> R e. CRing ) |
| 7 |
|
fvexd |
|- ( ( F e. Q /\ G e. Q ) -> ( Base ` R ) e. _V ) |
| 8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 9 |
1 8
|
pf1f |
|- ( F e. Q -> F : ( Base ` R ) --> ( Base ` R ) ) |
| 10 |
9
|
adantr |
|- ( ( F e. Q /\ G e. Q ) -> F : ( Base ` R ) --> ( Base ` R ) ) |
| 11 |
|
fvex |
|- ( Base ` R ) e. _V |
| 12 |
3 8 4
|
pwselbasb |
|- ( ( R e. CRing /\ ( Base ` R ) e. _V ) -> ( F e. ( Base ` ( R ^s ( Base ` R ) ) ) <-> F : ( Base ` R ) --> ( Base ` R ) ) ) |
| 13 |
6 11 12
|
sylancl |
|- ( ( F e. Q /\ G e. Q ) -> ( F e. ( Base ` ( R ^s ( Base ` R ) ) ) <-> F : ( Base ` R ) --> ( Base ` R ) ) ) |
| 14 |
10 13
|
mpbird |
|- ( ( F e. Q /\ G e. Q ) -> F e. ( Base ` ( R ^s ( Base ` R ) ) ) ) |
| 15 |
1 8
|
pf1f |
|- ( G e. Q -> G : ( Base ` R ) --> ( Base ` R ) ) |
| 16 |
15
|
adantl |
|- ( ( F e. Q /\ G e. Q ) -> G : ( Base ` R ) --> ( Base ` R ) ) |
| 17 |
3 8 4
|
pwselbasb |
|- ( ( R e. CRing /\ ( Base ` R ) e. _V ) -> ( G e. ( Base ` ( R ^s ( Base ` R ) ) ) <-> G : ( Base ` R ) --> ( Base ` R ) ) ) |
| 18 |
6 11 17
|
sylancl |
|- ( ( F e. Q /\ G e. Q ) -> ( G e. ( Base ` ( R ^s ( Base ` R ) ) ) <-> G : ( Base ` R ) --> ( Base ` R ) ) ) |
| 19 |
16 18
|
mpbird |
|- ( ( F e. Q /\ G e. Q ) -> G e. ( Base ` ( R ^s ( Base ` R ) ) ) ) |
| 20 |
|
eqid |
|- ( +g ` ( R ^s ( Base ` R ) ) ) = ( +g ` ( R ^s ( Base ` R ) ) ) |
| 21 |
3 4 6 7 14 19 2 20
|
pwsplusgval |
|- ( ( F e. Q /\ G e. Q ) -> ( F ( +g ` ( R ^s ( Base ` R ) ) ) G ) = ( F oF .+ G ) ) |
| 22 |
8 1
|
pf1subrg |
|- ( R e. CRing -> Q e. ( SubRing ` ( R ^s ( Base ` R ) ) ) ) |
| 23 |
6 22
|
syl |
|- ( ( F e. Q /\ G e. Q ) -> Q e. ( SubRing ` ( R ^s ( Base ` R ) ) ) ) |
| 24 |
20
|
subrgacl |
|- ( ( Q e. ( SubRing ` ( R ^s ( Base ` R ) ) ) /\ F e. Q /\ G e. Q ) -> ( F ( +g ` ( R ^s ( Base ` R ) ) ) G ) e. Q ) |
| 25 |
24
|
3expib |
|- ( Q e. ( SubRing ` ( R ^s ( Base ` R ) ) ) -> ( ( F e. Q /\ G e. Q ) -> ( F ( +g ` ( R ^s ( Base ` R ) ) ) G ) e. Q ) ) |
| 26 |
23 25
|
mpcom |
|- ( ( F e. Q /\ G e. Q ) -> ( F ( +g ` ( R ^s ( Base ` R ) ) ) G ) e. Q ) |
| 27 |
21 26
|
eqeltrrd |
|- ( ( F e. Q /\ G e. Q ) -> ( F oF .+ G ) e. Q ) |