Step |
Hyp |
Ref |
Expression |
1 |
|
pf1rcl.q |
|- Q = ran ( eval1 ` R ) |
2 |
|
n0i |
|- ( X e. Q -> -. Q = (/) ) |
3 |
|
eqid |
|- ( eval1 ` R ) = ( eval1 ` R ) |
4 |
|
eqid |
|- ( 1o eval R ) = ( 1o eval R ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
3 4 5
|
evl1fval |
|- ( eval1 ` R ) = ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) |
7 |
6
|
rneqi |
|- ran ( eval1 ` R ) = ran ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) |
8 |
|
rnco2 |
|- ran ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) = ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) " ran ( 1o eval R ) ) |
9 |
1 7 8
|
3eqtri |
|- Q = ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) " ran ( 1o eval R ) ) |
10 |
|
inss2 |
|- ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) C_ ran ( 1o eval R ) |
11 |
|
neq0 |
|- ( -. ran ( 1o eval R ) = (/) <-> E. x x e. ran ( 1o eval R ) ) |
12 |
4 5
|
evlval |
|- ( 1o eval R ) = ( ( 1o evalSub R ) ` ( Base ` R ) ) |
13 |
12
|
rneqi |
|- ran ( 1o eval R ) = ran ( ( 1o evalSub R ) ` ( Base ` R ) ) |
14 |
13
|
mpfrcl |
|- ( x e. ran ( 1o eval R ) -> ( 1o e. _V /\ R e. CRing /\ ( Base ` R ) e. ( SubRing ` R ) ) ) |
15 |
14
|
simp2d |
|- ( x e. ran ( 1o eval R ) -> R e. CRing ) |
16 |
15
|
exlimiv |
|- ( E. x x e. ran ( 1o eval R ) -> R e. CRing ) |
17 |
11 16
|
sylbi |
|- ( -. ran ( 1o eval R ) = (/) -> R e. CRing ) |
18 |
17
|
con1i |
|- ( -. R e. CRing -> ran ( 1o eval R ) = (/) ) |
19 |
|
sseq0 |
|- ( ( ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) C_ ran ( 1o eval R ) /\ ran ( 1o eval R ) = (/) ) -> ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) = (/) ) |
20 |
10 18 19
|
sylancr |
|- ( -. R e. CRing -> ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) = (/) ) |
21 |
|
imadisj |
|- ( ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) " ran ( 1o eval R ) ) = (/) <-> ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) = (/) ) |
22 |
20 21
|
sylibr |
|- ( -. R e. CRing -> ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) " ran ( 1o eval R ) ) = (/) ) |
23 |
9 22
|
eqtrid |
|- ( -. R e. CRing -> Q = (/) ) |
24 |
2 23
|
nsyl2 |
|- ( X e. Q -> R e. CRing ) |