Step |
Hyp |
Ref |
Expression |
1 |
|
pf1rcl.q |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
2 |
|
n0i |
⊢ ( 𝑋 ∈ 𝑄 → ¬ 𝑄 = ∅ ) |
3 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
4 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
3 4 5
|
evl1fval |
⊢ ( eval1 ‘ 𝑅 ) = ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) |
7 |
6
|
rneqi |
⊢ ran ( eval1 ‘ 𝑅 ) = ran ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) |
8 |
|
rnco2 |
⊢ ran ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) = ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) “ ran ( 1o eval 𝑅 ) ) |
9 |
1 7 8
|
3eqtri |
⊢ 𝑄 = ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) “ ran ( 1o eval 𝑅 ) ) |
10 |
|
inss2 |
⊢ ( dom ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) ∩ ran ( 1o eval 𝑅 ) ) ⊆ ran ( 1o eval 𝑅 ) |
11 |
|
neq0 |
⊢ ( ¬ ran ( 1o eval 𝑅 ) = ∅ ↔ ∃ 𝑥 𝑥 ∈ ran ( 1o eval 𝑅 ) ) |
12 |
4 5
|
evlval |
⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) |
13 |
12
|
rneqi |
⊢ ran ( 1o eval 𝑅 ) = ran ( ( 1o evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) |
14 |
13
|
mpfrcl |
⊢ ( 𝑥 ∈ ran ( 1o eval 𝑅 ) → ( 1o ∈ V ∧ 𝑅 ∈ CRing ∧ ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) ) |
15 |
14
|
simp2d |
⊢ ( 𝑥 ∈ ran ( 1o eval 𝑅 ) → 𝑅 ∈ CRing ) |
16 |
15
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 ∈ ran ( 1o eval 𝑅 ) → 𝑅 ∈ CRing ) |
17 |
11 16
|
sylbi |
⊢ ( ¬ ran ( 1o eval 𝑅 ) = ∅ → 𝑅 ∈ CRing ) |
18 |
17
|
con1i |
⊢ ( ¬ 𝑅 ∈ CRing → ran ( 1o eval 𝑅 ) = ∅ ) |
19 |
|
sseq0 |
⊢ ( ( ( dom ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) ∩ ran ( 1o eval 𝑅 ) ) ⊆ ran ( 1o eval 𝑅 ) ∧ ran ( 1o eval 𝑅 ) = ∅ ) → ( dom ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) ∩ ran ( 1o eval 𝑅 ) ) = ∅ ) |
20 |
10 18 19
|
sylancr |
⊢ ( ¬ 𝑅 ∈ CRing → ( dom ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) ∩ ran ( 1o eval 𝑅 ) ) = ∅ ) |
21 |
|
imadisj |
⊢ ( ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) “ ran ( 1o eval 𝑅 ) ) = ∅ ↔ ( dom ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) ∩ ran ( 1o eval 𝑅 ) ) = ∅ ) |
22 |
20 21
|
sylibr |
⊢ ( ¬ 𝑅 ∈ CRing → ( ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( Base ‘ 𝑅 ) ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 1o × { 𝑦 } ) ) ) ) “ ran ( 1o eval 𝑅 ) ) = ∅ ) |
23 |
9 22
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ CRing → 𝑄 = ∅ ) |
24 |
2 23
|
nsyl2 |
⊢ ( 𝑋 ∈ 𝑄 → 𝑅 ∈ CRing ) |