Description: Closure of a polynomial with real coefficients. (Contributed by Thierry Arnoux, 18-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | plyrecld.1 | |- ( ph -> F e. ( Poly ` RR ) ) |
|
| plyrecld.2 | |- ( ph -> X e. RR ) |
||
| Assertion | plyrecld | |- ( ph -> ( F ` X ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plyrecld.1 | |- ( ph -> F e. ( Poly ` RR ) ) |
|
| 2 | plyrecld.2 | |- ( ph -> X e. RR ) |
|
| 3 | fvres | |- ( X e. RR -> ( ( F |` RR ) ` X ) = ( F ` X ) ) |
|
| 4 | 2 3 | syl | |- ( ph -> ( ( F |` RR ) ` X ) = ( F ` X ) ) |
| 5 | plyreres | |- ( F e. ( Poly ` RR ) -> ( F |` RR ) : RR --> RR ) |
|
| 6 | 1 5 | syl | |- ( ph -> ( F |` RR ) : RR --> RR ) |
| 7 | 6 2 | ffvelcdmd | |- ( ph -> ( ( F |` RR ) ` X ) e. RR ) |
| 8 | 4 7 | eqeltrrd | |- ( ph -> ( F ` X ) e. RR ) |