Description: Closure of a polynomial with real coefficients. (Contributed by Thierry Arnoux, 18-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plyrecld.1 | |- ( ph -> F e. ( Poly ` RR ) ) |
|
plyrecld.2 | |- ( ph -> X e. RR ) |
||
Assertion | plyrecld | |- ( ph -> ( F ` X ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyrecld.1 | |- ( ph -> F e. ( Poly ` RR ) ) |
|
2 | plyrecld.2 | |- ( ph -> X e. RR ) |
|
3 | fvres | |- ( X e. RR -> ( ( F |` RR ) ` X ) = ( F ` X ) ) |
|
4 | 2 3 | syl | |- ( ph -> ( ( F |` RR ) ` X ) = ( F ` X ) ) |
5 | plyreres | |- ( F e. ( Poly ` RR ) -> ( F |` RR ) : RR --> RR ) |
|
6 | 1 5 | syl | |- ( ph -> ( F |` RR ) : RR --> RR ) |
7 | 6 2 | ffvelrnd | |- ( ph -> ( ( F |` RR ) ` X ) e. RR ) |
8 | 4 7 | eqeltrrd | |- ( ph -> ( F ` X ) e. RR ) |