Metamath Proof Explorer


Theorem plyrecld

Description: Closure of a polynomial with real coefficients. (Contributed by Thierry Arnoux, 18-Sep-2018)

Ref Expression
Hypotheses plyrecld.1 φ F Poly
plyrecld.2 φ X
Assertion plyrecld φ F X

Proof

Step Hyp Ref Expression
1 plyrecld.1 φ F Poly
2 plyrecld.2 φ X
3 fvres X F X = F X
4 2 3 syl φ F X = F X
5 plyreres F Poly F :
6 1 5 syl φ F :
7 6 2 ffvelrnd φ F X
8 4 7 eqeltrrd φ F X