| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plybss |
|- ( F e. ( Poly ` RR ) -> RR C_ CC ) |
| 2 |
|
plyf |
|- ( F e. ( Poly ` RR ) -> F : CC --> CC ) |
| 3 |
|
ffn |
|- ( F : CC --> CC -> F Fn CC ) |
| 4 |
|
fnssresb |
|- ( F Fn CC -> ( ( F |` RR ) Fn RR <-> RR C_ CC ) ) |
| 5 |
2 3 4
|
3syl |
|- ( F e. ( Poly ` RR ) -> ( ( F |` RR ) Fn RR <-> RR C_ CC ) ) |
| 6 |
1 5
|
mpbird |
|- ( F e. ( Poly ` RR ) -> ( F |` RR ) Fn RR ) |
| 7 |
|
fvres |
|- ( a e. RR -> ( ( F |` RR ) ` a ) = ( F ` a ) ) |
| 8 |
7
|
adantl |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( ( F |` RR ) ` a ) = ( F ` a ) ) |
| 9 |
|
recn |
|- ( a e. RR -> a e. CC ) |
| 10 |
|
ffvelcdm |
|- ( ( F : CC --> CC /\ a e. CC ) -> ( F ` a ) e. CC ) |
| 11 |
2 9 10
|
syl2an |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` a ) e. CC ) |
| 12 |
|
plyrecj |
|- ( ( F e. ( Poly ` RR ) /\ a e. CC ) -> ( * ` ( F ` a ) ) = ( F ` ( * ` a ) ) ) |
| 13 |
9 12
|
sylan2 |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` ( F ` a ) ) = ( F ` ( * ` a ) ) ) |
| 14 |
|
cjre |
|- ( a e. RR -> ( * ` a ) = a ) |
| 15 |
14
|
adantl |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` a ) = a ) |
| 16 |
15
|
fveq2d |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` ( * ` a ) ) = ( F ` a ) ) |
| 17 |
13 16
|
eqtrd |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( * ` ( F ` a ) ) = ( F ` a ) ) |
| 18 |
11 17
|
cjrebd |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( F ` a ) e. RR ) |
| 19 |
8 18
|
eqeltrd |
|- ( ( F e. ( Poly ` RR ) /\ a e. RR ) -> ( ( F |` RR ) ` a ) e. RR ) |
| 20 |
19
|
ralrimiva |
|- ( F e. ( Poly ` RR ) -> A. a e. RR ( ( F |` RR ) ` a ) e. RR ) |
| 21 |
|
fnfvrnss |
|- ( ( ( F |` RR ) Fn RR /\ A. a e. RR ( ( F |` RR ) ` a ) e. RR ) -> ran ( F |` RR ) C_ RR ) |
| 22 |
6 20 21
|
syl2anc |
|- ( F e. ( Poly ` RR ) -> ran ( F |` RR ) C_ RR ) |
| 23 |
|
df-f |
|- ( ( F |` RR ) : RR --> RR <-> ( ( F |` RR ) Fn RR /\ ran ( F |` RR ) C_ RR ) ) |
| 24 |
6 22 23
|
sylanbrc |
|- ( F e. ( Poly ` RR ) -> ( F |` RR ) : RR --> RR ) |