Step |
Hyp |
Ref |
Expression |
1 |
|
signsply0.d |
|- D = ( deg ` F ) |
2 |
|
signsply0.c |
|- C = ( coeff ` F ) |
3 |
|
signsply0.b |
|- B = ( C ` D ) |
4 |
|
signsplypnf.g |
|- G = ( x e. RR+ |-> ( x ^ D ) ) |
5 |
|
plyf |
|- ( F e. ( Poly ` RR ) -> F : CC --> CC ) |
6 |
5
|
ffnd |
|- ( F e. ( Poly ` RR ) -> F Fn CC ) |
7 |
|
ovex |
|- ( x ^ D ) e. _V |
8 |
7
|
rgenw |
|- A. x e. RR+ ( x ^ D ) e. _V |
9 |
4
|
fnmpt |
|- ( A. x e. RR+ ( x ^ D ) e. _V -> G Fn RR+ ) |
10 |
8 9
|
mp1i |
|- ( F e. ( Poly ` RR ) -> G Fn RR+ ) |
11 |
|
cnex |
|- CC e. _V |
12 |
11
|
a1i |
|- ( F e. ( Poly ` RR ) -> CC e. _V ) |
13 |
|
reex |
|- RR e. _V |
14 |
|
rpssre |
|- RR+ C_ RR |
15 |
13 14
|
ssexi |
|- RR+ e. _V |
16 |
15
|
a1i |
|- ( F e. ( Poly ` RR ) -> RR+ e. _V ) |
17 |
|
ax-resscn |
|- RR C_ CC |
18 |
14 17
|
sstri |
|- RR+ C_ CC |
19 |
|
sseqin2 |
|- ( RR+ C_ CC <-> ( CC i^i RR+ ) = RR+ ) |
20 |
18 19
|
mpbi |
|- ( CC i^i RR+ ) = RR+ |
21 |
2 1
|
coeid2 |
|- ( ( F e. ( Poly ` RR ) /\ x e. CC ) -> ( F ` x ) = sum_ k e. ( 0 ... D ) ( ( C ` k ) x. ( x ^ k ) ) ) |
22 |
4
|
fvmpt2 |
|- ( ( x e. RR+ /\ ( x ^ D ) e. _V ) -> ( G ` x ) = ( x ^ D ) ) |
23 |
7 22
|
mpan2 |
|- ( x e. RR+ -> ( G ` x ) = ( x ^ D ) ) |
24 |
23
|
adantl |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( G ` x ) = ( x ^ D ) ) |
25 |
6 10 12 16 20 21 24
|
offval |
|- ( F e. ( Poly ` RR ) -> ( F oF / G ) = ( x e. RR+ |-> ( sum_ k e. ( 0 ... D ) ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ) |
26 |
|
fzfid |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( 0 ... D ) e. Fin ) |
27 |
18
|
a1i |
|- ( F e. ( Poly ` RR ) -> RR+ C_ CC ) |
28 |
27
|
sselda |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> x e. CC ) |
29 |
|
dgrcl |
|- ( F e. ( Poly ` RR ) -> ( deg ` F ) e. NN0 ) |
30 |
1 29
|
eqeltrid |
|- ( F e. ( Poly ` RR ) -> D e. NN0 ) |
31 |
30
|
adantr |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> D e. NN0 ) |
32 |
28 31
|
expcld |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( x ^ D ) e. CC ) |
33 |
2
|
coef3 |
|- ( F e. ( Poly ` RR ) -> C : NN0 --> CC ) |
34 |
33
|
ad2antrr |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> C : NN0 --> CC ) |
35 |
|
elfznn0 |
|- ( k e. ( 0 ... D ) -> k e. NN0 ) |
36 |
35
|
adantl |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> k e. NN0 ) |
37 |
34 36
|
ffvelrnd |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> ( C ` k ) e. CC ) |
38 |
28
|
adantr |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> x e. CC ) |
39 |
38 36
|
expcld |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> ( x ^ k ) e. CC ) |
40 |
37 39
|
mulcld |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> ( ( C ` k ) x. ( x ^ k ) ) e. CC ) |
41 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
42 |
41
|
adantl |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> x =/= 0 ) |
43 |
30
|
nn0zd |
|- ( F e. ( Poly ` RR ) -> D e. ZZ ) |
44 |
43
|
adantr |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> D e. ZZ ) |
45 |
28 42 44
|
expne0d |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( x ^ D ) =/= 0 ) |
46 |
26 32 40 45
|
fsumdivc |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( sum_ k e. ( 0 ... D ) ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) = sum_ k e. ( 0 ... D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) |
47 |
|
fzosn |
|- ( D e. ZZ -> ( D ..^ ( D + 1 ) ) = { D } ) |
48 |
47
|
ineq2d |
|- ( D e. ZZ -> ( ( 0 ..^ D ) i^i ( D ..^ ( D + 1 ) ) ) = ( ( 0 ..^ D ) i^i { D } ) ) |
49 |
|
fzodisj |
|- ( ( 0 ..^ D ) i^i ( D ..^ ( D + 1 ) ) ) = (/) |
50 |
48 49
|
eqtr3di |
|- ( D e. ZZ -> ( ( 0 ..^ D ) i^i { D } ) = (/) ) |
51 |
44 50
|
syl |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( ( 0 ..^ D ) i^i { D } ) = (/) ) |
52 |
|
fzval3 |
|- ( D e. ZZ -> ( 0 ... D ) = ( 0 ..^ ( D + 1 ) ) ) |
53 |
43 52
|
syl |
|- ( F e. ( Poly ` RR ) -> ( 0 ... D ) = ( 0 ..^ ( D + 1 ) ) ) |
54 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
55 |
30 54
|
eleqtrdi |
|- ( F e. ( Poly ` RR ) -> D e. ( ZZ>= ` 0 ) ) |
56 |
|
fzosplitsn |
|- ( D e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( D + 1 ) ) = ( ( 0 ..^ D ) u. { D } ) ) |
57 |
55 56
|
syl |
|- ( F e. ( Poly ` RR ) -> ( 0 ..^ ( D + 1 ) ) = ( ( 0 ..^ D ) u. { D } ) ) |
58 |
53 57
|
eqtrd |
|- ( F e. ( Poly ` RR ) -> ( 0 ... D ) = ( ( 0 ..^ D ) u. { D } ) ) |
59 |
58
|
adantr |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( 0 ... D ) = ( ( 0 ..^ D ) u. { D } ) ) |
60 |
32
|
adantr |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> ( x ^ D ) e. CC ) |
61 |
42
|
adantr |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> x =/= 0 ) |
62 |
44
|
adantr |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> D e. ZZ ) |
63 |
38 61 62
|
expne0d |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> ( x ^ D ) =/= 0 ) |
64 |
40 60 63
|
divcld |
|- ( ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) /\ k e. ( 0 ... D ) ) -> ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) e. CC ) |
65 |
51 59 26 64
|
fsumsplit |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> sum_ k e. ( 0 ... D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) = ( sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) + sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ) |
66 |
46 65
|
eqtrd |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( sum_ k e. ( 0 ... D ) ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) = ( sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) + sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ) |
67 |
66
|
mpteq2dva |
|- ( F e. ( Poly ` RR ) -> ( x e. RR+ |-> ( sum_ k e. ( 0 ... D ) ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) = ( x e. RR+ |-> ( sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) + sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ) ) |
68 |
25 67
|
eqtrd |
|- ( F e. ( Poly ` RR ) -> ( F oF / G ) = ( x e. RR+ |-> ( sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) + sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ) ) |
69 |
|
sumex |
|- sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) e. _V |
70 |
69
|
a1i |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) e. _V ) |
71 |
|
sumex |
|- sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) e. _V |
72 |
71
|
a1i |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) e. _V ) |
73 |
14
|
a1i |
|- ( F e. ( Poly ` RR ) -> RR+ C_ RR ) |
74 |
|
fzofi |
|- ( 0 ..^ D ) e. Fin |
75 |
74
|
a1i |
|- ( F e. ( Poly ` RR ) -> ( 0 ..^ D ) e. Fin ) |
76 |
|
ovexd |
|- ( ( F e. ( Poly ` RR ) /\ ( x e. RR+ /\ k e. ( 0 ..^ D ) ) ) -> ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) e. _V ) |
77 |
33
|
ad2antrr |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> C : NN0 --> CC ) |
78 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ D ) -> k e. NN0 ) |
79 |
78
|
ad2antlr |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> k e. NN0 ) |
80 |
77 79
|
ffvelrnd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( C ` k ) e. CC ) |
81 |
28
|
adantlr |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> x e. CC ) |
82 |
81 79
|
expcld |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( x ^ k ) e. CC ) |
83 |
32
|
adantlr |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( x ^ D ) e. CC ) |
84 |
41
|
adantl |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> x =/= 0 ) |
85 |
44
|
adantlr |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> D e. ZZ ) |
86 |
81 84 85
|
expne0d |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( x ^ D ) =/= 0 ) |
87 |
80 82 83 86
|
divassd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) = ( ( C ` k ) x. ( ( x ^ k ) / ( x ^ D ) ) ) ) |
88 |
87
|
mpteq2dva |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( x e. RR+ |-> ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) = ( x e. RR+ |-> ( ( C ` k ) x. ( ( x ^ k ) / ( x ^ D ) ) ) ) ) |
89 |
|
fvexd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( C ` k ) e. _V ) |
90 |
|
ovexd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( ( x ^ k ) / ( x ^ D ) ) e. _V ) |
91 |
33
|
adantr |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> C : NN0 --> CC ) |
92 |
78
|
adantl |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> k e. NN0 ) |
93 |
91 92
|
ffvelrnd |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( C ` k ) e. CC ) |
94 |
|
rlimconst |
|- ( ( RR+ C_ RR /\ ( C ` k ) e. CC ) -> ( x e. RR+ |-> ( C ` k ) ) ~~>r ( C ` k ) ) |
95 |
14 93 94
|
sylancr |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( x e. RR+ |-> ( C ` k ) ) ~~>r ( C ` k ) ) |
96 |
79
|
nn0zd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> k e. ZZ ) |
97 |
85 96
|
zsubcld |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( D - k ) e. ZZ ) |
98 |
81 84 97
|
cxpexpzd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( x ^c ( D - k ) ) = ( x ^ ( D - k ) ) ) |
99 |
98
|
oveq2d |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( 1 / ( x ^c ( D - k ) ) ) = ( 1 / ( x ^ ( D - k ) ) ) ) |
100 |
81 84 97
|
expnegd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( x ^ -u ( D - k ) ) = ( 1 / ( x ^ ( D - k ) ) ) ) |
101 |
85
|
zcnd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> D e. CC ) |
102 |
79
|
nn0cnd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> k e. CC ) |
103 |
101 102
|
negsubdi2d |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> -u ( D - k ) = ( k - D ) ) |
104 |
103
|
oveq2d |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( x ^ -u ( D - k ) ) = ( x ^ ( k - D ) ) ) |
105 |
99 100 104
|
3eqtr2d |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( 1 / ( x ^c ( D - k ) ) ) = ( x ^ ( k - D ) ) ) |
106 |
81 84 85 96
|
expsubd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( x ^ ( k - D ) ) = ( ( x ^ k ) / ( x ^ D ) ) ) |
107 |
105 106
|
eqtrd |
|- ( ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) /\ x e. RR+ ) -> ( 1 / ( x ^c ( D - k ) ) ) = ( ( x ^ k ) / ( x ^ D ) ) ) |
108 |
107
|
mpteq2dva |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( x e. RR+ |-> ( 1 / ( x ^c ( D - k ) ) ) ) = ( x e. RR+ |-> ( ( x ^ k ) / ( x ^ D ) ) ) ) |
109 |
92
|
nn0red |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> k e. RR ) |
110 |
30
|
adantr |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> D e. NN0 ) |
111 |
110
|
nn0red |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> D e. RR ) |
112 |
|
elfzolt2 |
|- ( k e. ( 0 ..^ D ) -> k < D ) |
113 |
112
|
adantl |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> k < D ) |
114 |
|
difrp |
|- ( ( k e. RR /\ D e. RR ) -> ( k < D <-> ( D - k ) e. RR+ ) ) |
115 |
114
|
biimpa |
|- ( ( ( k e. RR /\ D e. RR ) /\ k < D ) -> ( D - k ) e. RR+ ) |
116 |
109 111 113 115
|
syl21anc |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( D - k ) e. RR+ ) |
117 |
|
cxplim |
|- ( ( D - k ) e. RR+ -> ( x e. RR+ |-> ( 1 / ( x ^c ( D - k ) ) ) ) ~~>r 0 ) |
118 |
116 117
|
syl |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( x e. RR+ |-> ( 1 / ( x ^c ( D - k ) ) ) ) ~~>r 0 ) |
119 |
108 118
|
eqbrtrrd |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( x e. RR+ |-> ( ( x ^ k ) / ( x ^ D ) ) ) ~~>r 0 ) |
120 |
89 90 95 119
|
rlimmul |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( x e. RR+ |-> ( ( C ` k ) x. ( ( x ^ k ) / ( x ^ D ) ) ) ) ~~>r ( ( C ` k ) x. 0 ) ) |
121 |
93
|
mul01d |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( ( C ` k ) x. 0 ) = 0 ) |
122 |
120 121
|
breqtrd |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( x e. RR+ |-> ( ( C ` k ) x. ( ( x ^ k ) / ( x ^ D ) ) ) ) ~~>r 0 ) |
123 |
88 122
|
eqbrtrd |
|- ( ( F e. ( Poly ` RR ) /\ k e. ( 0 ..^ D ) ) -> ( x e. RR+ |-> ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ~~>r 0 ) |
124 |
73 75 76 123
|
fsumrlim |
|- ( F e. ( Poly ` RR ) -> ( x e. RR+ |-> sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ~~>r sum_ k e. ( 0 ..^ D ) 0 ) |
125 |
75
|
olcd |
|- ( F e. ( Poly ` RR ) -> ( ( 0 ..^ D ) C_ ( ZZ>= ` 0 ) \/ ( 0 ..^ D ) e. Fin ) ) |
126 |
|
sumz |
|- ( ( ( 0 ..^ D ) C_ ( ZZ>= ` 0 ) \/ ( 0 ..^ D ) e. Fin ) -> sum_ k e. ( 0 ..^ D ) 0 = 0 ) |
127 |
125 126
|
syl |
|- ( F e. ( Poly ` RR ) -> sum_ k e. ( 0 ..^ D ) 0 = 0 ) |
128 |
124 127
|
breqtrd |
|- ( F e. ( Poly ` RR ) -> ( x e. RR+ |-> sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ~~>r 0 ) |
129 |
33 30
|
ffvelrnd |
|- ( F e. ( Poly ` RR ) -> ( C ` D ) e. CC ) |
130 |
129
|
adantr |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( C ` D ) e. CC ) |
131 |
130 32
|
mulcld |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( ( C ` D ) x. ( x ^ D ) ) e. CC ) |
132 |
131 32 45
|
divcld |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( ( ( C ` D ) x. ( x ^ D ) ) / ( x ^ D ) ) e. CC ) |
133 |
|
fveq2 |
|- ( k = D -> ( C ` k ) = ( C ` D ) ) |
134 |
|
oveq2 |
|- ( k = D -> ( x ^ k ) = ( x ^ D ) ) |
135 |
133 134
|
oveq12d |
|- ( k = D -> ( ( C ` k ) x. ( x ^ k ) ) = ( ( C ` D ) x. ( x ^ D ) ) ) |
136 |
135
|
oveq1d |
|- ( k = D -> ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) = ( ( ( C ` D ) x. ( x ^ D ) ) / ( x ^ D ) ) ) |
137 |
136
|
sumsn |
|- ( ( D e. NN0 /\ ( ( ( C ` D ) x. ( x ^ D ) ) / ( x ^ D ) ) e. CC ) -> sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) = ( ( ( C ` D ) x. ( x ^ D ) ) / ( x ^ D ) ) ) |
138 |
31 132 137
|
syl2anc |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) = ( ( ( C ` D ) x. ( x ^ D ) ) / ( x ^ D ) ) ) |
139 |
130 32 45
|
divcan4d |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> ( ( ( C ` D ) x. ( x ^ D ) ) / ( x ^ D ) ) = ( C ` D ) ) |
140 |
138 139
|
eqtrd |
|- ( ( F e. ( Poly ` RR ) /\ x e. RR+ ) -> sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) = ( C ` D ) ) |
141 |
140
|
mpteq2dva |
|- ( F e. ( Poly ` RR ) -> ( x e. RR+ |-> sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) = ( x e. RR+ |-> ( C ` D ) ) ) |
142 |
|
rlimconst |
|- ( ( RR+ C_ RR /\ ( C ` D ) e. CC ) -> ( x e. RR+ |-> ( C ` D ) ) ~~>r ( C ` D ) ) |
143 |
14 129 142
|
sylancr |
|- ( F e. ( Poly ` RR ) -> ( x e. RR+ |-> ( C ` D ) ) ~~>r ( C ` D ) ) |
144 |
141 143
|
eqbrtrd |
|- ( F e. ( Poly ` RR ) -> ( x e. RR+ |-> sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ~~>r ( C ` D ) ) |
145 |
70 72 128 144
|
rlimadd |
|- ( F e. ( Poly ` RR ) -> ( x e. RR+ |-> ( sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) + sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ) ~~>r ( 0 + ( C ` D ) ) ) |
146 |
129
|
addid2d |
|- ( F e. ( Poly ` RR ) -> ( 0 + ( C ` D ) ) = ( C ` D ) ) |
147 |
146 3
|
eqtr4di |
|- ( F e. ( Poly ` RR ) -> ( 0 + ( C ` D ) ) = B ) |
148 |
145 147
|
breqtrd |
|- ( F e. ( Poly ` RR ) -> ( x e. RR+ |-> ( sum_ k e. ( 0 ..^ D ) ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) + sum_ k e. { D } ( ( ( C ` k ) x. ( x ^ k ) ) / ( x ^ D ) ) ) ) ~~>r B ) |
149 |
68 148
|
eqbrtrd |
|- ( F e. ( Poly ` RR ) -> ( F oF / G ) ~~>r B ) |