| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsply0.d |
⊢ 𝐷 = ( deg ‘ 𝐹 ) |
| 2 |
|
signsply0.c |
⊢ 𝐶 = ( coeff ‘ 𝐹 ) |
| 3 |
|
signsply0.b |
⊢ 𝐵 = ( 𝐶 ‘ 𝐷 ) |
| 4 |
|
signsplypnf.g |
⊢ 𝐺 = ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) |
| 5 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐹 : ℂ ⟶ ℂ ) |
| 6 |
5
|
ffnd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐹 Fn ℂ ) |
| 7 |
|
ovex |
⊢ ( 𝑥 ↑ 𝐷 ) ∈ V |
| 8 |
7
|
rgenw |
⊢ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ↑ 𝐷 ) ∈ V |
| 9 |
4
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ℝ+ ( 𝑥 ↑ 𝐷 ) ∈ V → 𝐺 Fn ℝ+ ) |
| 10 |
8 9
|
mp1i |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐺 Fn ℝ+ ) |
| 11 |
|
cnex |
⊢ ℂ ∈ V |
| 12 |
11
|
a1i |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ℂ ∈ V ) |
| 13 |
|
reex |
⊢ ℝ ∈ V |
| 14 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 15 |
13 14
|
ssexi |
⊢ ℝ+ ∈ V |
| 16 |
15
|
a1i |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ℝ+ ∈ V ) |
| 17 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 18 |
14 17
|
sstri |
⊢ ℝ+ ⊆ ℂ |
| 19 |
|
sseqin2 |
⊢ ( ℝ+ ⊆ ℂ ↔ ( ℂ ∩ ℝ+ ) = ℝ+ ) |
| 20 |
18 19
|
mpbi |
⊢ ( ℂ ∩ ℝ+ ) = ℝ+ |
| 21 |
2 1
|
coeid2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℂ ) → ( 𝐹 ‘ 𝑥 ) = Σ 𝑘 ∈ ( 0 ... 𝐷 ) ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ) |
| 22 |
4
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑥 ↑ 𝐷 ) ∈ V ) → ( 𝐺 ‘ 𝑥 ) = ( 𝑥 ↑ 𝐷 ) ) |
| 23 |
7 22
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝐺 ‘ 𝑥 ) = ( 𝑥 ↑ 𝐷 ) ) |
| 24 |
23
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐺 ‘ 𝑥 ) = ( 𝑥 ↑ 𝐷 ) ) |
| 25 |
6 10 12 16 20 21 24
|
offval |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ∘f / 𝐺 ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 0 ... 𝐷 ) ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ) |
| 26 |
|
fzfid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 0 ... 𝐷 ) ∈ Fin ) |
| 27 |
18
|
a1i |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ℝ+ ⊆ ℂ ) |
| 28 |
27
|
sselda |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 29 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 30 |
1 29
|
eqeltrid |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐷 ∈ ℕ0 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ℕ0 ) |
| 32 |
28 31
|
expcld |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 𝐷 ) ∈ ℂ ) |
| 33 |
2
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐶 : ℕ0 ⟶ ℂ ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → 𝐶 : ℕ0 ⟶ ℂ ) |
| 35 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝐷 ) → 𝑘 ∈ ℕ0 ) |
| 36 |
35
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → 𝑘 ∈ ℕ0 ) |
| 37 |
34 36
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → ( 𝐶 ‘ 𝑘 ) ∈ ℂ ) |
| 38 |
28
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → 𝑥 ∈ ℂ ) |
| 39 |
38 36
|
expcld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
| 40 |
37 39
|
mulcld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) ∈ ℂ ) |
| 41 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 43 |
30
|
nn0zd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐷 ∈ ℤ ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ℤ ) |
| 45 |
28 42 44
|
expne0d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 𝐷 ) ≠ 0 ) |
| 46 |
26 32 40 45
|
fsumdivc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑘 ∈ ( 0 ... 𝐷 ) ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) = Σ 𝑘 ∈ ( 0 ... 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) |
| 47 |
|
fzosn |
⊢ ( 𝐷 ∈ ℤ → ( 𝐷 ..^ ( 𝐷 + 1 ) ) = { 𝐷 } ) |
| 48 |
47
|
ineq2d |
⊢ ( 𝐷 ∈ ℤ → ( ( 0 ..^ 𝐷 ) ∩ ( 𝐷 ..^ ( 𝐷 + 1 ) ) ) = ( ( 0 ..^ 𝐷 ) ∩ { 𝐷 } ) ) |
| 49 |
|
fzodisj |
⊢ ( ( 0 ..^ 𝐷 ) ∩ ( 𝐷 ..^ ( 𝐷 + 1 ) ) ) = ∅ |
| 50 |
48 49
|
eqtr3di |
⊢ ( 𝐷 ∈ ℤ → ( ( 0 ..^ 𝐷 ) ∩ { 𝐷 } ) = ∅ ) |
| 51 |
44 50
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 0 ..^ 𝐷 ) ∩ { 𝐷 } ) = ∅ ) |
| 52 |
|
fzval3 |
⊢ ( 𝐷 ∈ ℤ → ( 0 ... 𝐷 ) = ( 0 ..^ ( 𝐷 + 1 ) ) ) |
| 53 |
43 52
|
syl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 0 ... 𝐷 ) = ( 0 ..^ ( 𝐷 + 1 ) ) ) |
| 54 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 55 |
30 54
|
eleqtrdi |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐷 ∈ ( ℤ≥ ‘ 0 ) ) |
| 56 |
|
fzosplitsn |
⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( 𝐷 + 1 ) ) = ( ( 0 ..^ 𝐷 ) ∪ { 𝐷 } ) ) |
| 57 |
55 56
|
syl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 0 ..^ ( 𝐷 + 1 ) ) = ( ( 0 ..^ 𝐷 ) ∪ { 𝐷 } ) ) |
| 58 |
53 57
|
eqtrd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 0 ... 𝐷 ) = ( ( 0 ..^ 𝐷 ) ∪ { 𝐷 } ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 0 ... 𝐷 ) = ( ( 0 ..^ 𝐷 ) ∪ { 𝐷 } ) ) |
| 60 |
32
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → ( 𝑥 ↑ 𝐷 ) ∈ ℂ ) |
| 61 |
42
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → 𝑥 ≠ 0 ) |
| 62 |
44
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → 𝐷 ∈ ℤ ) |
| 63 |
38 61 62
|
expne0d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → ( 𝑥 ↑ 𝐷 ) ≠ 0 ) |
| 64 |
40 60 63
|
divcld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 0 ... 𝐷 ) ) → ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ∈ ℂ ) |
| 65 |
51 59 26 64
|
fsumsplit |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 0 ... 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) = ( Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) + Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ) |
| 66 |
46 65
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑘 ∈ ( 0 ... 𝐷 ) ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) = ( Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) + Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ) |
| 67 |
66
|
mpteq2dva |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 0 ... 𝐷 ) ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) + Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ) ) |
| 68 |
25 67
|
eqtrd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ∘f / 𝐺 ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) + Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ) ) |
| 69 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ∈ V |
| 70 |
69
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ∈ V ) |
| 71 |
|
sumex |
⊢ Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ∈ V |
| 72 |
71
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ∈ V ) |
| 73 |
14
|
a1i |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ℝ+ ⊆ ℝ ) |
| 74 |
|
fzofi |
⊢ ( 0 ..^ 𝐷 ) ∈ Fin |
| 75 |
74
|
a1i |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 0 ..^ 𝐷 ) ∈ Fin ) |
| 76 |
|
ovexd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ) → ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ∈ V ) |
| 77 |
33
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐶 : ℕ0 ⟶ ℂ ) |
| 78 |
|
elfzonn0 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝐷 ) → 𝑘 ∈ ℕ0 ) |
| 79 |
78
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑘 ∈ ℕ0 ) |
| 80 |
77 79
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐶 ‘ 𝑘 ) ∈ ℂ ) |
| 81 |
28
|
adantlr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 82 |
81 79
|
expcld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
| 83 |
32
|
adantlr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 𝐷 ) ∈ ℂ ) |
| 84 |
41
|
adantl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 85 |
44
|
adantlr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ℤ ) |
| 86 |
81 84 85
|
expne0d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 𝐷 ) ≠ 0 ) |
| 87 |
80 82 83 86
|
divassd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) = ( ( 𝐶 ‘ 𝑘 ) · ( ( 𝑥 ↑ 𝑘 ) / ( 𝑥 ↑ 𝐷 ) ) ) ) |
| 88 |
87
|
mpteq2dva |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( 𝐶 ‘ 𝑘 ) · ( ( 𝑥 ↑ 𝑘 ) / ( 𝑥 ↑ 𝐷 ) ) ) ) ) |
| 89 |
|
fvexd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐶 ‘ 𝑘 ) ∈ V ) |
| 90 |
|
ovexd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑥 ↑ 𝑘 ) / ( 𝑥 ↑ 𝐷 ) ) ∈ V ) |
| 91 |
33
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → 𝐶 : ℕ0 ⟶ ℂ ) |
| 92 |
78
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → 𝑘 ∈ ℕ0 ) |
| 93 |
91 92
|
ffvelcdmd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝐶 ‘ 𝑘 ) ∈ ℂ ) |
| 94 |
|
rlimconst |
⊢ ( ( ℝ+ ⊆ ℝ ∧ ( 𝐶 ‘ 𝑘 ) ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ ( 𝐶 ‘ 𝑘 ) ) ⇝𝑟 ( 𝐶 ‘ 𝑘 ) ) |
| 95 |
14 93 94
|
sylancr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( 𝐶 ‘ 𝑘 ) ) ⇝𝑟 ( 𝐶 ‘ 𝑘 ) ) |
| 96 |
79
|
nn0zd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑘 ∈ ℤ ) |
| 97 |
85 96
|
zsubcld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐷 − 𝑘 ) ∈ ℤ ) |
| 98 |
81 84 97
|
cxpexpzd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑𝑐 ( 𝐷 − 𝑘 ) ) = ( 𝑥 ↑ ( 𝐷 − 𝑘 ) ) ) |
| 99 |
98
|
oveq2d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 / ( 𝑥 ↑𝑐 ( 𝐷 − 𝑘 ) ) ) = ( 1 / ( 𝑥 ↑ ( 𝐷 − 𝑘 ) ) ) ) |
| 100 |
81 84 97
|
expnegd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ - ( 𝐷 − 𝑘 ) ) = ( 1 / ( 𝑥 ↑ ( 𝐷 − 𝑘 ) ) ) ) |
| 101 |
85
|
zcnd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ℂ ) |
| 102 |
79
|
nn0cnd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑘 ∈ ℂ ) |
| 103 |
101 102
|
negsubdi2d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → - ( 𝐷 − 𝑘 ) = ( 𝑘 − 𝐷 ) ) |
| 104 |
103
|
oveq2d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ - ( 𝐷 − 𝑘 ) ) = ( 𝑥 ↑ ( 𝑘 − 𝐷 ) ) ) |
| 105 |
99 100 104
|
3eqtr2d |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 / ( 𝑥 ↑𝑐 ( 𝐷 − 𝑘 ) ) ) = ( 𝑥 ↑ ( 𝑘 − 𝐷 ) ) ) |
| 106 |
81 84 85 96
|
expsubd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ ( 𝑘 − 𝐷 ) ) = ( ( 𝑥 ↑ 𝑘 ) / ( 𝑥 ↑ 𝐷 ) ) ) |
| 107 |
105 106
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 / ( 𝑥 ↑𝑐 ( 𝐷 − 𝑘 ) ) ) = ( ( 𝑥 ↑ 𝑘 ) / ( 𝑥 ↑ 𝐷 ) ) ) |
| 108 |
107
|
mpteq2dva |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( 1 / ( 𝑥 ↑𝑐 ( 𝐷 − 𝑘 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( 𝑥 ↑ 𝑘 ) / ( 𝑥 ↑ 𝐷 ) ) ) ) |
| 109 |
92
|
nn0red |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → 𝑘 ∈ ℝ ) |
| 110 |
30
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → 𝐷 ∈ ℕ0 ) |
| 111 |
110
|
nn0red |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → 𝐷 ∈ ℝ ) |
| 112 |
|
elfzolt2 |
⊢ ( 𝑘 ∈ ( 0 ..^ 𝐷 ) → 𝑘 < 𝐷 ) |
| 113 |
112
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → 𝑘 < 𝐷 ) |
| 114 |
|
difrp |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( 𝑘 < 𝐷 ↔ ( 𝐷 − 𝑘 ) ∈ ℝ+ ) ) |
| 115 |
114
|
biimpa |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑘 < 𝐷 ) → ( 𝐷 − 𝑘 ) ∈ ℝ+ ) |
| 116 |
109 111 113 115
|
syl21anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝐷 − 𝑘 ) ∈ ℝ+ ) |
| 117 |
|
cxplim |
⊢ ( ( 𝐷 − 𝑘 ) ∈ ℝ+ → ( 𝑥 ∈ ℝ+ ↦ ( 1 / ( 𝑥 ↑𝑐 ( 𝐷 − 𝑘 ) ) ) ) ⇝𝑟 0 ) |
| 118 |
116 117
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( 1 / ( 𝑥 ↑𝑐 ( 𝐷 − 𝑘 ) ) ) ) ⇝𝑟 0 ) |
| 119 |
108 118
|
eqbrtrrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( ( 𝑥 ↑ 𝑘 ) / ( 𝑥 ↑ 𝐷 ) ) ) ⇝𝑟 0 ) |
| 120 |
89 90 95 119
|
rlimmul |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( ( 𝐶 ‘ 𝑘 ) · ( ( 𝑥 ↑ 𝑘 ) / ( 𝑥 ↑ 𝐷 ) ) ) ) ⇝𝑟 ( ( 𝐶 ‘ 𝑘 ) · 0 ) ) |
| 121 |
93
|
mul01d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( ( 𝐶 ‘ 𝑘 ) · 0 ) = 0 ) |
| 122 |
120 121
|
breqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( ( 𝐶 ‘ 𝑘 ) · ( ( 𝑥 ↑ 𝑘 ) / ( 𝑥 ↑ 𝐷 ) ) ) ) ⇝𝑟 0 ) |
| 123 |
88 122
|
eqbrtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑘 ∈ ( 0 ..^ 𝐷 ) ) → ( 𝑥 ∈ ℝ+ ↦ ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ⇝𝑟 0 ) |
| 124 |
73 75 76 123
|
fsumrlim |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ⇝𝑟 Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) 0 ) |
| 125 |
75
|
olcd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( ( 0 ..^ 𝐷 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ..^ 𝐷 ) ∈ Fin ) ) |
| 126 |
|
sumz |
⊢ ( ( ( 0 ..^ 𝐷 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ..^ 𝐷 ) ∈ Fin ) → Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) 0 = 0 ) |
| 127 |
125 126
|
syl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) 0 = 0 ) |
| 128 |
124 127
|
breqtrd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ⇝𝑟 0 ) |
| 129 |
33 30
|
ffvelcdmd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐶 ‘ 𝐷 ) ∈ ℂ ) |
| 130 |
129
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐶 ‘ 𝐷 ) ∈ ℂ ) |
| 131 |
130 32
|
mulcld |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐶 ‘ 𝐷 ) · ( 𝑥 ↑ 𝐷 ) ) ∈ ℂ ) |
| 132 |
131 32 45
|
divcld |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 𝐶 ‘ 𝐷 ) · ( 𝑥 ↑ 𝐷 ) ) / ( 𝑥 ↑ 𝐷 ) ) ∈ ℂ ) |
| 133 |
|
fveq2 |
⊢ ( 𝑘 = 𝐷 → ( 𝐶 ‘ 𝑘 ) = ( 𝐶 ‘ 𝐷 ) ) |
| 134 |
|
oveq2 |
⊢ ( 𝑘 = 𝐷 → ( 𝑥 ↑ 𝑘 ) = ( 𝑥 ↑ 𝐷 ) ) |
| 135 |
133 134
|
oveq12d |
⊢ ( 𝑘 = 𝐷 → ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) = ( ( 𝐶 ‘ 𝐷 ) · ( 𝑥 ↑ 𝐷 ) ) ) |
| 136 |
135
|
oveq1d |
⊢ ( 𝑘 = 𝐷 → ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) = ( ( ( 𝐶 ‘ 𝐷 ) · ( 𝑥 ↑ 𝐷 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) |
| 137 |
136
|
sumsn |
⊢ ( ( 𝐷 ∈ ℕ0 ∧ ( ( ( 𝐶 ‘ 𝐷 ) · ( 𝑥 ↑ 𝐷 ) ) / ( 𝑥 ↑ 𝐷 ) ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) = ( ( ( 𝐶 ‘ 𝐷 ) · ( 𝑥 ↑ 𝐷 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) |
| 138 |
31 132 137
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) = ( ( ( 𝐶 ‘ 𝐷 ) · ( 𝑥 ↑ 𝐷 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) |
| 139 |
130 32 45
|
divcan4d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 𝐶 ‘ 𝐷 ) · ( 𝑥 ↑ 𝐷 ) ) / ( 𝑥 ↑ 𝐷 ) ) = ( 𝐶 ‘ 𝐷 ) ) |
| 140 |
138 139
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) = ( 𝐶 ‘ 𝐷 ) ) |
| 141 |
140
|
mpteq2dva |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 𝐶 ‘ 𝐷 ) ) ) |
| 142 |
|
rlimconst |
⊢ ( ( ℝ+ ⊆ ℝ ∧ ( 𝐶 ‘ 𝐷 ) ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ ( 𝐶 ‘ 𝐷 ) ) ⇝𝑟 ( 𝐶 ‘ 𝐷 ) ) |
| 143 |
14 129 142
|
sylancr |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝑥 ∈ ℝ+ ↦ ( 𝐶 ‘ 𝐷 ) ) ⇝𝑟 ( 𝐶 ‘ 𝐷 ) ) |
| 144 |
141 143
|
eqbrtrd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ⇝𝑟 ( 𝐶 ‘ 𝐷 ) ) |
| 145 |
70 72 128 144
|
rlimadd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) + Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ) ⇝𝑟 ( 0 + ( 𝐶 ‘ 𝐷 ) ) ) |
| 146 |
129
|
addlidd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 0 + ( 𝐶 ‘ 𝐷 ) ) = ( 𝐶 ‘ 𝐷 ) ) |
| 147 |
146 3
|
eqtr4di |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 0 + ( 𝐶 ‘ 𝐷 ) ) = 𝐵 ) |
| 148 |
145 147
|
breqtrd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑘 ∈ ( 0 ..^ 𝐷 ) ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) + Σ 𝑘 ∈ { 𝐷 } ( ( ( 𝐶 ‘ 𝑘 ) · ( 𝑥 ↑ 𝑘 ) ) / ( 𝑥 ↑ 𝐷 ) ) ) ) ⇝𝑟 𝐵 ) |
| 149 |
68 148
|
eqbrtrd |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ∘f / 𝐺 ) ⇝𝑟 𝐵 ) |