Step |
Hyp |
Ref |
Expression |
1 |
|
signsply0.d |
⊢ 𝐷 = ( deg ‘ 𝐹 ) |
2 |
|
signsply0.c |
⊢ 𝐶 = ( coeff ‘ 𝐹 ) |
3 |
|
signsply0.b |
⊢ 𝐵 = ( 𝐶 ‘ 𝐷 ) |
4 |
|
signsply0.a |
⊢ 𝐴 = ( 𝐶 ‘ 0 ) |
5 |
|
signsply0.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
6 |
|
signsply0.2 |
⊢ ( 𝜑 → 𝐹 ≠ 0𝑝 ) |
7 |
|
signsply0.3 |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) |
8 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → 𝑑 ∈ ℝ+ ) |
9 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) |
10 |
|
rpxr |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℝ* ) |
11 |
10
|
xrleidd |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ≤ 𝑑 ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → 𝑑 ≤ 𝑑 ) |
13 |
|
id |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℝ+ ) |
14 |
|
simpr |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → 𝑓 = 𝑑 ) |
15 |
14
|
breq2d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( 𝑑 ≤ 𝑓 ↔ 𝑑 ≤ 𝑑 ) ) |
16 |
14
|
fveq2d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑑 ) ) |
17 |
14
|
oveq1d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( 𝑓 ↑ 𝐷 ) = ( 𝑑 ↑ 𝐷 ) ) |
18 |
16 17
|
oveq12d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) = ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) |
19 |
18
|
fvoveq1d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) ) |
20 |
19
|
breq1d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) |
21 |
15 20
|
imbi12d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ↔ ( 𝑑 ≤ 𝑑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
22 |
13 21
|
rspcdv |
⊢ ( 𝑑 ∈ ℝ+ → ( ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( 𝑑 ≤ 𝑑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
23 |
8 9 12 22
|
syl3c |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) |
24 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ+ ) |
26 |
25
|
rpred |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ ) |
27 |
24 26
|
plyrecld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑑 ) ∈ ℝ ) |
28 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
29 |
5 28
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
30 |
1 29
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ℕ0 ) |
32 |
26 31
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ∈ ℝ ) |
33 |
25
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℂ ) |
34 |
25
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ≠ 0 ) |
35 |
30
|
nn0zd |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ℤ ) |
37 |
33 34 36
|
expne0d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ≠ 0 ) |
38 |
27 32 37
|
redivcld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ∈ ℝ ) |
39 |
|
0re |
⊢ 0 ∈ ℝ |
40 |
2
|
coef2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 0 ∈ ℝ ) → 𝐶 : ℕ0 ⟶ ℝ ) |
41 |
39 40
|
mpan2 |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐶 : ℕ0 ⟶ ℝ ) |
42 |
41
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 ‘ 𝐷 ) ∈ ℝ ) |
43 |
3 42
|
eqeltrid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝐷 ∈ ℕ0 ) → 𝐵 ∈ ℝ ) |
44 |
5 30 43
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
46 |
45
|
renegcld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → - 𝐵 ∈ ℝ ) |
47 |
38 45 46
|
absdifltd |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ↔ ( ( 𝐵 − - 𝐵 ) < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < ( 𝐵 + - 𝐵 ) ) ) ) |
48 |
47
|
simplbda |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < ( 𝐵 + - 𝐵 ) ) |
49 |
44
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
51 |
50
|
negidd |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝐵 + - 𝐵 ) = 0 ) |
52 |
51
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( 𝐵 + - 𝐵 ) = 0 ) |
53 |
48 52
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < 0 ) |
54 |
25 36
|
rpexpcld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ∈ ℝ+ ) |
55 |
27 54
|
ge0divd |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 0 ≤ ( 𝐹 ‘ 𝑑 ) ↔ 0 ≤ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
56 |
55
|
notbid |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ¬ 0 ≤ ( 𝐹 ‘ 𝑑 ) ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
57 |
|
0red |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 0 ∈ ℝ ) |
58 |
27 57
|
ltnled |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑑 ) < 0 ↔ ¬ 0 ≤ ( 𝐹 ‘ 𝑑 ) ) ) |
59 |
38 57
|
ltnled |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
60 |
56 58 59
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑑 ) < 0 ↔ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < 0 ) ) |
61 |
60
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( ( 𝐹 ‘ 𝑑 ) < 0 ↔ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < 0 ) ) |
62 |
53 61
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( 𝐹 ‘ 𝑑 ) < 0 ) |
63 |
23 62
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → ( 𝐹 ‘ 𝑑 ) < 0 ) |
64 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 0 ∈ ℝ ) |
65 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝑑 ∈ ℝ+ ) |
66 |
65
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝑑 ∈ ℝ ) |
67 |
65
|
rpgt0d |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 0 < 𝑑 ) |
68 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( 0 [,] 𝑑 ) ⊆ ℝ ) |
69 |
39 66 68
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( 0 [,] 𝑑 ) ⊆ ℝ ) |
70 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
71 |
69 70
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( 0 [,] 𝑑 ) ⊆ ℂ ) |
72 |
|
plycn |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
73 |
5 72
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
74 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
75 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
76 |
69
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → 𝑥 ∈ ℝ ) |
77 |
75 76
|
plyrecld |
⊢ ( ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
78 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( 𝐹 ‘ 𝑑 ) < 0 ) |
79 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝜑 ) |
80 |
79 44
|
syl |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝐵 ∈ ℝ ) |
81 |
|
simpr |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → - 𝐵 ∈ ℝ+ ) |
82 |
81
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → - 𝐵 ∈ ℝ+ ) |
83 |
|
negelrp |
⊢ ( 𝐵 ∈ ℝ → ( - 𝐵 ∈ ℝ+ ↔ 𝐵 < 0 ) ) |
84 |
83
|
biimpa |
⊢ ( ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℝ+ ) → 𝐵 < 0 ) |
85 |
80 82 84
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝐵 < 0 ) |
86 |
5 39 40
|
sylancl |
⊢ ( 𝜑 → 𝐶 : ℕ0 ⟶ ℝ ) |
87 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
88 |
87
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
89 |
86 88
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐶 ‘ 0 ) ∈ ℝ ) |
90 |
4 89
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
91 |
90 44 7
|
mul2lt0rlt0 |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 0 < 𝐴 ) |
92 |
91 4
|
breqtrdi |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 0 < ( 𝐶 ‘ 0 ) ) |
93 |
79 85 92
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 0 < ( 𝐶 ‘ 0 ) ) |
94 |
2
|
coefv0 |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
95 |
5 94
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
96 |
95
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( 𝐹 ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
97 |
93 96
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 0 < ( 𝐹 ‘ 0 ) ) |
98 |
78 97
|
jca |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( ( 𝐹 ‘ 𝑑 ) < 0 ∧ 0 < ( 𝐹 ‘ 0 ) ) ) |
99 |
64 66 64 67 71 74 77 98
|
ivth2 |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 ) |
100 |
|
0le0 |
⊢ 0 ≤ 0 |
101 |
|
pnfge |
⊢ ( 𝑑 ∈ ℝ* → 𝑑 ≤ +∞ ) |
102 |
10 101
|
syl |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ≤ +∞ ) |
103 |
|
0xr |
⊢ 0 ∈ ℝ* |
104 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
105 |
|
ioossioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 𝑑 ≤ +∞ ) ) → ( 0 (,) 𝑑 ) ⊆ ( 0 (,) +∞ ) ) |
106 |
103 104 105
|
mpanl12 |
⊢ ( ( 0 ≤ 0 ∧ 𝑑 ≤ +∞ ) → ( 0 (,) 𝑑 ) ⊆ ( 0 (,) +∞ ) ) |
107 |
100 102 106
|
sylancr |
⊢ ( 𝑑 ∈ ℝ+ → ( 0 (,) 𝑑 ) ⊆ ( 0 (,) +∞ ) ) |
108 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
109 |
107 108
|
sseqtrdi |
⊢ ( 𝑑 ∈ ℝ+ → ( 0 (,) 𝑑 ) ⊆ ℝ+ ) |
110 |
|
ssrexv |
⊢ ( ( 0 (,) 𝑑 ) ⊆ ℝ+ → ( ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) ) |
111 |
65 109 110
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) ) |
112 |
99 111
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
113 |
63 112
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
114 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐹 : ℂ ⟶ ℂ ) |
115 |
5 114
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
116 |
115
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℂ ) |
117 |
|
ovex |
⊢ ( 𝑥 ↑ 𝐷 ) ∈ V |
118 |
117
|
rgenw |
⊢ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ↑ 𝐷 ) ∈ V |
119 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) |
120 |
119
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ℝ+ ( 𝑥 ↑ 𝐷 ) ∈ V → ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) Fn ℝ+ ) |
121 |
118 120
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) Fn ℝ+ ) |
122 |
|
cnex |
⊢ ℂ ∈ V |
123 |
122
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
124 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
125 |
124 70
|
sstri |
⊢ ℝ+ ⊆ ℂ |
126 |
122 125
|
ssexi |
⊢ ℝ+ ∈ V |
127 |
126
|
a1i |
⊢ ( 𝜑 → ℝ+ ∈ V ) |
128 |
|
sseqin2 |
⊢ ( ℝ+ ⊆ ℂ ↔ ( ℂ ∩ ℝ+ ) = ℝ+ ) |
129 |
125 128
|
mpbi |
⊢ ( ℂ ∩ ℝ+ ) = ℝ+ |
130 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℂ ) → ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) |
131 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ) |
132 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) ∧ 𝑥 = 𝑓 ) → 𝑥 = 𝑓 ) |
133 |
132
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) ∧ 𝑥 = 𝑓 ) → ( 𝑥 ↑ 𝐷 ) = ( 𝑓 ↑ 𝐷 ) ) |
134 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝑓 ∈ ℝ+ ) |
135 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝑓 ↑ 𝐷 ) ∈ V ) |
136 |
131 133 134 135
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ‘ 𝑓 ) = ( 𝑓 ↑ 𝐷 ) ) |
137 |
116 121 123 127 129 130 136
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f / ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ) = ( 𝑓 ∈ ℝ+ ↦ ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ) ) |
138 |
|
oveq1 |
⊢ ( 𝑥 = 𝑓 → ( 𝑥 ↑ 𝐷 ) = ( 𝑓 ↑ 𝐷 ) ) |
139 |
138
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) = ( 𝑓 ∈ ℝ+ ↦ ( 𝑓 ↑ 𝐷 ) ) |
140 |
1 2 3 139
|
signsplypnf |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ∘f / ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ) ⇝𝑟 𝐵 ) |
141 |
5 140
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∘f / ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ) ⇝𝑟 𝐵 ) |
142 |
137 141
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑓 ∈ ℝ+ ↦ ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ) ⇝𝑟 𝐵 ) |
143 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝐹 : ℂ ⟶ ℂ ) |
144 |
134
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝑓 ∈ ℂ ) |
145 |
143 144
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑓 ) ∈ ℂ ) |
146 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝐷 ∈ ℕ0 ) |
147 |
144 146
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝑓 ↑ 𝐷 ) ∈ ℂ ) |
148 |
134
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝑓 ≠ 0 ) |
149 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝐷 ∈ ℤ ) |
150 |
144 148 149
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝑓 ↑ 𝐷 ) ≠ 0 ) |
151 |
145 147 150
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ∈ ℂ ) |
152 |
151
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ℝ+ ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ∈ ℂ ) |
153 |
124
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
154 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
155 |
152 153 49 154
|
rlim3 |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ℝ+ ↦ ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ) ⇝𝑟 𝐵 ↔ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) ) |
156 |
142 155
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
157 |
|
0lt1 |
⊢ 0 < 1 |
158 |
|
pnfge |
⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) |
159 |
104 158
|
ax-mp |
⊢ +∞ ≤ +∞ |
160 |
|
icossioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 < 1 ∧ +∞ ≤ +∞ ) ) → ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ ) ) |
161 |
103 104 157 159 160
|
mp4an |
⊢ ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ ) |
162 |
161 108
|
sseqtri |
⊢ ( 1 [,) +∞ ) ⊆ ℝ+ |
163 |
|
ssrexv |
⊢ ( ( 1 [,) +∞ ) ⊆ ℝ+ → ( ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) ) |
164 |
162 163
|
ax-mp |
⊢ ( ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
165 |
164
|
ralimi |
⊢ ( ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
166 |
156 165
|
syl |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
168 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑒 = - 𝐵 ) → 𝑒 = - 𝐵 ) |
169 |
168
|
breq2d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑒 = - 𝐵 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) |
170 |
169
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑒 = - 𝐵 ) → ( ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ↔ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
171 |
170
|
rexralbidv |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑒 = - 𝐵 ) → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
172 |
81 171
|
rspcdv |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → ( ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
173 |
167 172
|
mpd |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) |
174 |
113 173
|
r19.29a |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
175 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → 𝑑 ∈ ℝ+ ) |
176 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) |
177 |
11
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → 𝑑 ≤ 𝑑 ) |
178 |
19
|
breq1d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) |
179 |
15 178
|
imbi12d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ↔ ( 𝑑 ≤ 𝑑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
180 |
13 179
|
rspcdv |
⊢ ( 𝑑 ∈ ℝ+ → ( ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → ( 𝑑 ≤ 𝑑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
181 |
175 176 177 180
|
syl3c |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) |
182 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
183 |
182
|
subidd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝐵 − 𝐵 ) = 0 ) |
184 |
183
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → ( 𝐵 − 𝐵 ) = 0 ) |
185 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
186 |
124
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ℝ+ ⊆ ℝ ) |
187 |
186
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ ) |
188 |
185 187
|
plyrecld |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑑 ) ∈ ℝ ) |
189 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ℕ0 ) |
190 |
187 189
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ∈ ℝ ) |
191 |
187
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℂ ) |
192 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ+ ) |
193 |
192
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ≠ 0 ) |
194 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ℤ ) |
195 |
191 193 194
|
expne0d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ≠ 0 ) |
196 |
188 190 195
|
redivcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ∈ ℝ ) |
197 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
198 |
196 197 197
|
absdifltd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ↔ ( ( 𝐵 − 𝐵 ) < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < ( 𝐵 + 𝐵 ) ) ) ) |
199 |
198
|
simprbda |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → ( 𝐵 − 𝐵 ) < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) |
200 |
184 199
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → 0 < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) |
201 |
192 194
|
rpexpcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ∈ ℝ+ ) |
202 |
188 201
|
gt0divd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 0 < ( 𝐹 ‘ 𝑑 ) ↔ 0 < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
203 |
202
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → ( 0 < ( 𝐹 ‘ 𝑑 ) ↔ 0 < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
204 |
200 203
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → 0 < ( 𝐹 ‘ 𝑑 ) ) |
205 |
181 204
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → 0 < ( 𝐹 ‘ 𝑑 ) ) |
206 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 0 ∈ ℝ ) |
207 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝑑 ∈ ℝ+ ) |
208 |
207
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝑑 ∈ ℝ ) |
209 |
207
|
rpgt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 0 < 𝑑 ) |
210 |
39 208 68
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 0 [,] 𝑑 ) ⊆ ℝ ) |
211 |
210 70
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 0 [,] 𝑑 ) ⊆ ℂ ) |
212 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
213 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
214 |
210
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → 𝑥 ∈ ℝ ) |
215 |
213 214
|
plyrecld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
216 |
95
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 𝐹 ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
217 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝜑 ) |
218 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ) → 𝐵 ∈ ℝ+ ) |
219 |
218
|
rpgt0d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ) → 0 < 𝐵 ) |
220 |
219
|
3anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 0 < 𝐵 ) |
221 |
90 44 7
|
mul2lt0rgt0 |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 < 0 ) |
222 |
217 220 221
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝐴 < 0 ) |
223 |
4 222
|
eqbrtrrid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 𝐶 ‘ 0 ) < 0 ) |
224 |
216 223
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 𝐹 ‘ 0 ) < 0 ) |
225 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 0 < ( 𝐹 ‘ 𝑑 ) ) |
226 |
224 225
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( ( 𝐹 ‘ 0 ) < 0 ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ) |
227 |
206 208 206 209 211 212 215 226
|
ivth |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 ) |
228 |
207 109 110
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) ) |
229 |
227 228
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
230 |
205 229
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
231 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
232 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
233 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑒 = 𝐵 ) → 𝑒 = 𝐵 ) |
234 |
233
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑒 = 𝐵 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) |
235 |
234
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑒 = 𝐵 ) → ( ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ↔ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
236 |
235
|
rexralbidv |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑒 = 𝐵 ) → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
237 |
232 236
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ( ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
238 |
231 237
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) |
239 |
230 238
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
240 |
1 2
|
dgreq0 |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 = 0𝑝 ↔ ( 𝐶 ‘ 𝐷 ) = 0 ) ) |
241 |
5 240
|
syl |
⊢ ( 𝜑 → ( 𝐹 = 0𝑝 ↔ ( 𝐶 ‘ 𝐷 ) = 0 ) ) |
242 |
241
|
necon3bid |
⊢ ( 𝜑 → ( 𝐹 ≠ 0𝑝 ↔ ( 𝐶 ‘ 𝐷 ) ≠ 0 ) ) |
243 |
6 242
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐷 ) ≠ 0 ) |
244 |
3
|
neeq1i |
⊢ ( 𝐵 ≠ 0 ↔ ( 𝐶 ‘ 𝐷 ) ≠ 0 ) |
245 |
243 244
|
sylibr |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
246 |
|
rpneg |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℝ+ ↔ ¬ - 𝐵 ∈ ℝ+ ) ) |
247 |
246
|
biimprd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ¬ - 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ+ ) ) |
248 |
247
|
orrd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( - 𝐵 ∈ ℝ+ ∨ 𝐵 ∈ ℝ+ ) ) |
249 |
44 245 248
|
syl2anc |
⊢ ( 𝜑 → ( - 𝐵 ∈ ℝ+ ∨ 𝐵 ∈ ℝ+ ) ) |
250 |
174 239 249
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |