| Step |
Hyp |
Ref |
Expression |
| 1 |
|
signsply0.d |
⊢ 𝐷 = ( deg ‘ 𝐹 ) |
| 2 |
|
signsply0.c |
⊢ 𝐶 = ( coeff ‘ 𝐹 ) |
| 3 |
|
signsply0.b |
⊢ 𝐵 = ( 𝐶 ‘ 𝐷 ) |
| 4 |
|
signsply0.a |
⊢ 𝐴 = ( 𝐶 ‘ 0 ) |
| 5 |
|
signsply0.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
| 6 |
|
signsply0.2 |
⊢ ( 𝜑 → 𝐹 ≠ 0𝑝 ) |
| 7 |
|
signsply0.3 |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) < 0 ) |
| 8 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → 𝑑 ∈ ℝ+ ) |
| 9 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) |
| 10 |
|
rpxr |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℝ* ) |
| 11 |
10
|
xrleidd |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ≤ 𝑑 ) |
| 12 |
11
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → 𝑑 ≤ 𝑑 ) |
| 13 |
|
id |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ∈ ℝ+ ) |
| 14 |
|
simpr |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → 𝑓 = 𝑑 ) |
| 15 |
14
|
breq2d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( 𝑑 ≤ 𝑓 ↔ 𝑑 ≤ 𝑑 ) ) |
| 16 |
14
|
fveq2d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 17 |
14
|
oveq1d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( 𝑓 ↑ 𝐷 ) = ( 𝑑 ↑ 𝐷 ) ) |
| 18 |
16 17
|
oveq12d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) = ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) |
| 19 |
18
|
fvoveq1d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) ) |
| 20 |
19
|
breq1d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) |
| 21 |
15 20
|
imbi12d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ↔ ( 𝑑 ≤ 𝑑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
| 22 |
13 21
|
rspcdv |
⊢ ( 𝑑 ∈ ℝ+ → ( ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( 𝑑 ≤ 𝑑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
| 23 |
8 9 12 22
|
syl3c |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) |
| 24 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ+ ) |
| 26 |
25
|
rpred |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ ) |
| 27 |
24 26
|
plyrecld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑑 ) ∈ ℝ ) |
| 28 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 29 |
5 28
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 30 |
1 29
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ℕ0 ) |
| 32 |
26 31
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ∈ ℝ ) |
| 33 |
25
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℂ ) |
| 34 |
25
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ≠ 0 ) |
| 35 |
30
|
nn0zd |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ℤ ) |
| 37 |
33 34 36
|
expne0d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ≠ 0 ) |
| 38 |
27 32 37
|
redivcld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ∈ ℝ ) |
| 39 |
|
0re |
⊢ 0 ∈ ℝ |
| 40 |
2
|
coef2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 0 ∈ ℝ ) → 𝐶 : ℕ0 ⟶ ℝ ) |
| 41 |
39 40
|
mpan2 |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐶 : ℕ0 ⟶ ℝ ) |
| 42 |
41
|
ffvelcdmda |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 ‘ 𝐷 ) ∈ ℝ ) |
| 43 |
3 42
|
eqeltrid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝐷 ∈ ℕ0 ) → 𝐵 ∈ ℝ ) |
| 44 |
5 30 43
|
syl2anc |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 46 |
45
|
renegcld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → - 𝐵 ∈ ℝ ) |
| 47 |
38 45 46
|
absdifltd |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ↔ ( ( 𝐵 − - 𝐵 ) < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < ( 𝐵 + - 𝐵 ) ) ) ) |
| 48 |
47
|
simplbda |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < ( 𝐵 + - 𝐵 ) ) |
| 49 |
44
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 51 |
50
|
negidd |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝐵 + - 𝐵 ) = 0 ) |
| 52 |
51
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( 𝐵 + - 𝐵 ) = 0 ) |
| 53 |
48 52
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < 0 ) |
| 54 |
25 36
|
rpexpcld |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ∈ ℝ+ ) |
| 55 |
27 54
|
ge0divd |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 0 ≤ ( 𝐹 ‘ 𝑑 ) ↔ 0 ≤ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
| 56 |
55
|
notbid |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ¬ 0 ≤ ( 𝐹 ‘ 𝑑 ) ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
| 57 |
|
0red |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 0 ∈ ℝ ) |
| 58 |
27 57
|
ltnled |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑑 ) < 0 ↔ ¬ 0 ≤ ( 𝐹 ‘ 𝑑 ) ) ) |
| 59 |
38 57
|
ltnled |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < 0 ↔ ¬ 0 ≤ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
| 60 |
56 58 59
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑑 ) < 0 ↔ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < 0 ) ) |
| 61 |
60
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( ( 𝐹 ‘ 𝑑 ) < 0 ↔ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < 0 ) ) |
| 62 |
53 61
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) → ( 𝐹 ‘ 𝑑 ) < 0 ) |
| 63 |
23 62
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → ( 𝐹 ‘ 𝑑 ) < 0 ) |
| 64 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 0 ∈ ℝ ) |
| 65 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝑑 ∈ ℝ+ ) |
| 66 |
65
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝑑 ∈ ℝ ) |
| 67 |
65
|
rpgt0d |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 0 < 𝑑 ) |
| 68 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( 0 [,] 𝑑 ) ⊆ ℝ ) |
| 69 |
39 66 68
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( 0 [,] 𝑑 ) ⊆ ℝ ) |
| 70 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 71 |
69 70
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( 0 [,] 𝑑 ) ⊆ ℂ ) |
| 72 |
|
plycn |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
| 73 |
5 72
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
| 74 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
| 75 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
| 76 |
69
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → 𝑥 ∈ ℝ ) |
| 77 |
75 76
|
plyrecld |
⊢ ( ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 78 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( 𝐹 ‘ 𝑑 ) < 0 ) |
| 79 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝜑 ) |
| 80 |
79 44
|
syl |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝐵 ∈ ℝ ) |
| 81 |
|
simpr |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → - 𝐵 ∈ ℝ+ ) |
| 82 |
81
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → - 𝐵 ∈ ℝ+ ) |
| 83 |
|
negelrp |
⊢ ( 𝐵 ∈ ℝ → ( - 𝐵 ∈ ℝ+ ↔ 𝐵 < 0 ) ) |
| 84 |
83
|
biimpa |
⊢ ( ( 𝐵 ∈ ℝ ∧ - 𝐵 ∈ ℝ+ ) → 𝐵 < 0 ) |
| 85 |
80 82 84
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 𝐵 < 0 ) |
| 86 |
5 39 40
|
sylancl |
⊢ ( 𝜑 → 𝐶 : ℕ0 ⟶ ℝ ) |
| 87 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 88 |
87
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 89 |
86 88
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐶 ‘ 0 ) ∈ ℝ ) |
| 90 |
4 89
|
eqeltrid |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 91 |
90 44 7
|
mul2lt0rlt0 |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 0 < 𝐴 ) |
| 92 |
91 4
|
breqtrdi |
⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 0 < ( 𝐶 ‘ 0 ) ) |
| 93 |
79 85 92
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 0 < ( 𝐶 ‘ 0 ) ) |
| 94 |
2
|
coefv0 |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 95 |
5 94
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 96 |
95
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( 𝐹 ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 97 |
93 96
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → 0 < ( 𝐹 ‘ 0 ) ) |
| 98 |
78 97
|
jca |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( ( 𝐹 ‘ 𝑑 ) < 0 ∧ 0 < ( 𝐹 ‘ 0 ) ) ) |
| 99 |
64 66 64 67 71 74 77 98
|
ivth2 |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 ) |
| 100 |
|
0le0 |
⊢ 0 ≤ 0 |
| 101 |
|
pnfge |
⊢ ( 𝑑 ∈ ℝ* → 𝑑 ≤ +∞ ) |
| 102 |
10 101
|
syl |
⊢ ( 𝑑 ∈ ℝ+ → 𝑑 ≤ +∞ ) |
| 103 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 104 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 105 |
|
ioossioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 ≤ 0 ∧ 𝑑 ≤ +∞ ) ) → ( 0 (,) 𝑑 ) ⊆ ( 0 (,) +∞ ) ) |
| 106 |
103 104 105
|
mpanl12 |
⊢ ( ( 0 ≤ 0 ∧ 𝑑 ≤ +∞ ) → ( 0 (,) 𝑑 ) ⊆ ( 0 (,) +∞ ) ) |
| 107 |
100 102 106
|
sylancr |
⊢ ( 𝑑 ∈ ℝ+ → ( 0 (,) 𝑑 ) ⊆ ( 0 (,) +∞ ) ) |
| 108 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 109 |
107 108
|
sseqtrdi |
⊢ ( 𝑑 ∈ ℝ+ → ( 0 (,) 𝑑 ) ⊆ ℝ+ ) |
| 110 |
|
ssrexv |
⊢ ( ( 0 (,) 𝑑 ) ⊆ ℝ+ → ( ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) ) |
| 111 |
65 109 110
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ( ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) ) |
| 112 |
99 111
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( 𝐹 ‘ 𝑑 ) < 0 ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
| 113 |
63 112
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
| 114 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐹 : ℂ ⟶ ℂ ) |
| 115 |
5 114
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
| 116 |
115
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℂ ) |
| 117 |
|
ovex |
⊢ ( 𝑥 ↑ 𝐷 ) ∈ V |
| 118 |
117
|
rgenw |
⊢ ∀ 𝑥 ∈ ℝ+ ( 𝑥 ↑ 𝐷 ) ∈ V |
| 119 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) |
| 120 |
119
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ℝ+ ( 𝑥 ↑ 𝐷 ) ∈ V → ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) Fn ℝ+ ) |
| 121 |
118 120
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) Fn ℝ+ ) |
| 122 |
|
cnex |
⊢ ℂ ∈ V |
| 123 |
122
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
| 124 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 125 |
124 70
|
sstri |
⊢ ℝ+ ⊆ ℂ |
| 126 |
122 125
|
ssexi |
⊢ ℝ+ ∈ V |
| 127 |
126
|
a1i |
⊢ ( 𝜑 → ℝ+ ∈ V ) |
| 128 |
|
sseqin2 |
⊢ ( ℝ+ ⊆ ℂ ↔ ( ℂ ∩ ℝ+ ) = ℝ+ ) |
| 129 |
125 128
|
mpbi |
⊢ ( ℂ ∩ ℝ+ ) = ℝ+ |
| 130 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℂ ) → ( 𝐹 ‘ 𝑓 ) = ( 𝐹 ‘ 𝑓 ) ) |
| 131 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ) |
| 132 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) ∧ 𝑥 = 𝑓 ) → 𝑥 = 𝑓 ) |
| 133 |
132
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) ∧ 𝑥 = 𝑓 ) → ( 𝑥 ↑ 𝐷 ) = ( 𝑓 ↑ 𝐷 ) ) |
| 134 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝑓 ∈ ℝ+ ) |
| 135 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝑓 ↑ 𝐷 ) ∈ V ) |
| 136 |
131 133 134 135
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ‘ 𝑓 ) = ( 𝑓 ↑ 𝐷 ) ) |
| 137 |
116 121 123 127 129 130 136
|
offval |
⊢ ( 𝜑 → ( 𝐹 ∘f / ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ) = ( 𝑓 ∈ ℝ+ ↦ ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ) ) |
| 138 |
|
oveq1 |
⊢ ( 𝑥 = 𝑓 → ( 𝑥 ↑ 𝐷 ) = ( 𝑓 ↑ 𝐷 ) ) |
| 139 |
138
|
cbvmptv |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) = ( 𝑓 ∈ ℝ+ ↦ ( 𝑓 ↑ 𝐷 ) ) |
| 140 |
1 2 3 139
|
signsplypnf |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ∘f / ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ) ⇝𝑟 𝐵 ) |
| 141 |
5 140
|
syl |
⊢ ( 𝜑 → ( 𝐹 ∘f / ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑ 𝐷 ) ) ) ⇝𝑟 𝐵 ) |
| 142 |
137 141
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑓 ∈ ℝ+ ↦ ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ) ⇝𝑟 𝐵 ) |
| 143 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝐹 : ℂ ⟶ ℂ ) |
| 144 |
134
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝑓 ∈ ℂ ) |
| 145 |
143 144
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑓 ) ∈ ℂ ) |
| 146 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝐷 ∈ ℕ0 ) |
| 147 |
144 146
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝑓 ↑ 𝐷 ) ∈ ℂ ) |
| 148 |
134
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝑓 ≠ 0 ) |
| 149 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → 𝐷 ∈ ℤ ) |
| 150 |
144 148 149
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( 𝑓 ↑ 𝐷 ) ≠ 0 ) |
| 151 |
145 147 150
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ∈ ℂ ) |
| 152 |
151
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ℝ+ ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ∈ ℂ ) |
| 153 |
124
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
| 154 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 155 |
152 153 49 154
|
rlim3 |
⊢ ( 𝜑 → ( ( 𝑓 ∈ ℝ+ ↦ ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) ) ⇝𝑟 𝐵 ↔ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) ) |
| 156 |
142 155
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
| 157 |
|
0lt1 |
⊢ 0 < 1 |
| 158 |
|
pnfge |
⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) |
| 159 |
104 158
|
ax-mp |
⊢ +∞ ≤ +∞ |
| 160 |
|
icossioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 0 < 1 ∧ +∞ ≤ +∞ ) ) → ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ ) ) |
| 161 |
103 104 157 159 160
|
mp4an |
⊢ ( 1 [,) +∞ ) ⊆ ( 0 (,) +∞ ) |
| 162 |
161 108
|
sseqtri |
⊢ ( 1 [,) +∞ ) ⊆ ℝ+ |
| 163 |
|
ssrexv |
⊢ ( ( 1 [,) +∞ ) ⊆ ℝ+ → ( ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) ) |
| 164 |
162 163
|
ax-mp |
⊢ ( ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
| 165 |
164
|
ralimi |
⊢ ( ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ( 1 [,) +∞ ) ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
| 166 |
156 165
|
syl |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
| 168 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑒 = - 𝐵 ) → 𝑒 = - 𝐵 ) |
| 169 |
168
|
breq2d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑒 = - 𝐵 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) |
| 170 |
169
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑒 = - 𝐵 ) → ( ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ↔ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
| 171 |
170
|
rexralbidv |
⊢ ( ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) ∧ 𝑒 = - 𝐵 ) → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
| 172 |
81 171
|
rspcdv |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → ( ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) ) |
| 173 |
167 172
|
mpd |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < - 𝐵 ) ) |
| 174 |
113 173
|
r19.29a |
⊢ ( ( 𝜑 ∧ - 𝐵 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
| 175 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → 𝑑 ∈ ℝ+ ) |
| 176 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) |
| 177 |
11
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → 𝑑 ≤ 𝑑 ) |
| 178 |
19
|
breq1d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) |
| 179 |
15 178
|
imbi12d |
⊢ ( ( 𝑑 ∈ ℝ+ ∧ 𝑓 = 𝑑 ) → ( ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ↔ ( 𝑑 ≤ 𝑑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
| 180 |
13 179
|
rspcdv |
⊢ ( 𝑑 ∈ ℝ+ → ( ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → ( 𝑑 ≤ 𝑑 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
| 181 |
175 176 177 180
|
syl3c |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) |
| 182 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 183 |
182
|
subidd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝐵 − 𝐵 ) = 0 ) |
| 184 |
183
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → ( 𝐵 − 𝐵 ) = 0 ) |
| 185 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
| 186 |
124
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ℝ+ ⊆ ℝ ) |
| 187 |
186
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ ) |
| 188 |
185 187
|
plyrecld |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑑 ) ∈ ℝ ) |
| 189 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ℕ0 ) |
| 190 |
187 189
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ∈ ℝ ) |
| 191 |
187
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℂ ) |
| 192 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ∈ ℝ+ ) |
| 193 |
192
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝑑 ≠ 0 ) |
| 194 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐷 ∈ ℤ ) |
| 195 |
191 193 194
|
expne0d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ≠ 0 ) |
| 196 |
188 190 195
|
redivcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ∈ ℝ ) |
| 197 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → 𝐵 ∈ ℝ ) |
| 198 |
196 197 197
|
absdifltd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ↔ ( ( 𝐵 − 𝐵 ) < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ∧ ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) < ( 𝐵 + 𝐵 ) ) ) ) |
| 199 |
198
|
simprbda |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → ( 𝐵 − 𝐵 ) < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) |
| 200 |
184 199
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → 0 < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) |
| 201 |
192 194
|
rpexpcld |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 𝑑 ↑ 𝐷 ) ∈ ℝ+ ) |
| 202 |
188 201
|
gt0divd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) → ( 0 < ( 𝐹 ‘ 𝑑 ) ↔ 0 < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
| 203 |
202
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → ( 0 < ( 𝐹 ‘ 𝑑 ) ↔ 0 < ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) ) ) |
| 204 |
200 203
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ( abs ‘ ( ( ( 𝐹 ‘ 𝑑 ) / ( 𝑑 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) → 0 < ( 𝐹 ‘ 𝑑 ) ) |
| 205 |
181 204
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → 0 < ( 𝐹 ‘ 𝑑 ) ) |
| 206 |
|
0red |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 0 ∈ ℝ ) |
| 207 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝑑 ∈ ℝ+ ) |
| 208 |
207
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝑑 ∈ ℝ ) |
| 209 |
207
|
rpgt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 0 < 𝑑 ) |
| 210 |
39 208 68
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 0 [,] 𝑑 ) ⊆ ℝ ) |
| 211 |
210 70
|
sstrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 0 [,] 𝑑 ) ⊆ ℂ ) |
| 212 |
73
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
| 213 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → 𝐹 ∈ ( Poly ‘ ℝ ) ) |
| 214 |
210
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → 𝑥 ∈ ℝ ) |
| 215 |
213 214
|
plyrecld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑥 ∈ ( 0 [,] 𝑑 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 216 |
95
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 𝐹 ‘ 0 ) = ( 𝐶 ‘ 0 ) ) |
| 217 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝜑 ) |
| 218 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ) → 𝐵 ∈ ℝ+ ) |
| 219 |
218
|
rpgt0d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ) → 0 < 𝐵 ) |
| 220 |
219
|
3anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 0 < 𝐵 ) |
| 221 |
90 44 7
|
mul2lt0rgt0 |
⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 < 0 ) |
| 222 |
217 220 221
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 𝐴 < 0 ) |
| 223 |
4 222
|
eqbrtrrid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 𝐶 ‘ 0 ) < 0 ) |
| 224 |
216 223
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( 𝐹 ‘ 0 ) < 0 ) |
| 225 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → 0 < ( 𝐹 ‘ 𝑑 ) ) |
| 226 |
224 225
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( ( 𝐹 ‘ 0 ) < 0 ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) ) |
| 227 |
206 208 206 209 211 212 215 226
|
ivth |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 ) |
| 228 |
207 109 110
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ( ∃ 𝑧 ∈ ( 0 (,) 𝑑 ) ( 𝐹 ‘ 𝑧 ) = 0 → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) ) |
| 229 |
227 228
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ 0 < ( 𝐹 ‘ 𝑑 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
| 230 |
205 229
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑑 ∈ ℝ+ ) ∧ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
| 231 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ) |
| 232 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℝ+ ) |
| 233 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑒 = 𝐵 ) → 𝑒 = 𝐵 ) |
| 234 |
233
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑒 = 𝐵 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) |
| 235 |
234
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑒 = 𝐵 ) → ( ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ↔ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
| 236 |
235
|
rexralbidv |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑒 = 𝐵 ) → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) ↔ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
| 237 |
232 236
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ( ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝑒 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) ) |
| 238 |
231 237
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑓 ∈ ℝ+ ( 𝑑 ≤ 𝑓 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑓 ) / ( 𝑓 ↑ 𝐷 ) ) − 𝐵 ) ) < 𝐵 ) ) |
| 239 |
230 238
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |
| 240 |
1 2
|
dgreq0 |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 = 0𝑝 ↔ ( 𝐶 ‘ 𝐷 ) = 0 ) ) |
| 241 |
5 240
|
syl |
⊢ ( 𝜑 → ( 𝐹 = 0𝑝 ↔ ( 𝐶 ‘ 𝐷 ) = 0 ) ) |
| 242 |
241
|
necon3bid |
⊢ ( 𝜑 → ( 𝐹 ≠ 0𝑝 ↔ ( 𝐶 ‘ 𝐷 ) ≠ 0 ) ) |
| 243 |
6 242
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ‘ 𝐷 ) ≠ 0 ) |
| 244 |
3
|
neeq1i |
⊢ ( 𝐵 ≠ 0 ↔ ( 𝐶 ‘ 𝐷 ) ≠ 0 ) |
| 245 |
243 244
|
sylibr |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 246 |
|
rpneg |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℝ+ ↔ ¬ - 𝐵 ∈ ℝ+ ) ) |
| 247 |
246
|
biimprd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( ¬ - 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ+ ) ) |
| 248 |
247
|
orrd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( - 𝐵 ∈ ℝ+ ∨ 𝐵 ∈ ℝ+ ) ) |
| 249 |
44 245 248
|
syl2anc |
⊢ ( 𝜑 → ( - 𝐵 ∈ ℝ+ ∨ 𝐵 ∈ ℝ+ ) ) |
| 250 |
174 239 249
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ+ ( 𝐹 ‘ 𝑧 ) = 0 ) |