Metamath Proof Explorer


Theorem signsply0

Description: Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient A and B are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018)

Ref Expression
Hypotheses signsply0.d D = deg F
signsply0.c C = coeff F
signsply0.b B = C D
signsply0.a A = C 0
signsply0.1 φ F Poly
signsply0.2 φ F 0 𝑝
signsply0.3 φ A B < 0
Assertion signsply0 φ z + F z = 0

Proof

Step Hyp Ref Expression
1 signsply0.d D = deg F
2 signsply0.c C = coeff F
3 signsply0.b B = C D
4 signsply0.a A = C 0
5 signsply0.1 φ F Poly
6 signsply0.2 φ F 0 𝑝
7 signsply0.3 φ A B < 0
8 simplr φ B + d + f + d f F f f D B < B d +
9 simpr φ B + d + f + d f F f f D B < B f + d f F f f D B < B
10 rpxr d + d *
11 10 xrleidd d + d d
12 11 ad2antlr φ B + d + f + d f F f f D B < B d d
13 id d + d +
14 simpr d + f = d f = d
15 14 breq2d d + f = d d f d d
16 14 fveq2d d + f = d F f = F d
17 14 oveq1d d + f = d f D = d D
18 16 17 oveq12d d + f = d F f f D = F d d D
19 18 fvoveq1d d + f = d F f f D B = F d d D B
20 19 breq1d d + f = d F f f D B < B F d d D B < B
21 15 20 imbi12d d + f = d d f F f f D B < B d d F d d D B < B
22 13 21 rspcdv d + f + d f F f f D B < B d d F d d D B < B
23 8 9 12 22 syl3c φ B + d + f + d f F f f D B < B F d d D B < B
24 5 ad2antrr φ B + d + F Poly
25 simpr φ B + d + d +
26 25 rpred φ B + d + d
27 24 26 plyrecld φ B + d + F d
28 dgrcl F Poly deg F 0
29 5 28 syl φ deg F 0
30 1 29 eqeltrid φ D 0
31 30 ad2antrr φ B + d + D 0
32 26 31 reexpcld φ B + d + d D
33 25 rpcnd φ B + d + d
34 25 rpne0d φ B + d + d 0
35 30 nn0zd φ D
36 35 ad2antrr φ B + d + D
37 33 34 36 expne0d φ B + d + d D 0
38 27 32 37 redivcld φ B + d + F d d D
39 0re 0
40 2 coef2 F Poly 0 C : 0
41 39 40 mpan2 F Poly C : 0
42 41 ffvelrnda F Poly D 0 C D
43 3 42 eqeltrid F Poly D 0 B
44 5 30 43 syl2anc φ B
45 44 ad2antrr φ B + d + B
46 45 renegcld φ B + d + B
47 38 45 46 absdifltd φ B + d + F d d D B < B B B < F d d D F d d D < B + B
48 47 simplbda φ B + d + F d d D B < B F d d D < B + B
49 44 recnd φ B
50 49 ad2antrr φ B + d + B
51 50 negidd φ B + d + B + B = 0
52 51 adantr φ B + d + F d d D B < B B + B = 0
53 48 52 breqtrd φ B + d + F d d D B < B F d d D < 0
54 25 36 rpexpcld φ B + d + d D +
55 27 54 ge0divd φ B + d + 0 F d 0 F d d D
56 55 notbid φ B + d + ¬ 0 F d ¬ 0 F d d D
57 0red φ B + d + 0
58 27 57 ltnled φ B + d + F d < 0 ¬ 0 F d
59 38 57 ltnled φ B + d + F d d D < 0 ¬ 0 F d d D
60 56 58 59 3bitr4d φ B + d + F d < 0 F d d D < 0
61 60 adantr φ B + d + F d d D B < B F d < 0 F d d D < 0
62 53 61 mpbird φ B + d + F d d D B < B F d < 0
63 23 62 syldan φ B + d + f + d f F f f D B < B F d < 0
64 0red φ B + d + F d < 0 0
65 simplr φ B + d + F d < 0 d +
66 65 rpred φ B + d + F d < 0 d
67 65 rpgt0d φ B + d + F d < 0 0 < d
68 iccssre 0 d 0 d
69 39 66 68 sylancr φ B + d + F d < 0 0 d
70 ax-resscn
71 69 70 sstrdi φ B + d + F d < 0 0 d
72 plycn F Poly F : cn
73 5 72 syl φ F : cn
74 73 ad3antrrr φ B + d + F d < 0 F : cn
75 5 ad4antr φ B + d + F d < 0 x 0 d F Poly
76 69 sselda φ B + d + F d < 0 x 0 d x
77 75 76 plyrecld φ B + d + F d < 0 x 0 d F x
78 simpr φ B + d + F d < 0 F d < 0
79 simplll φ B + d + F d < 0 φ
80 79 44 syl φ B + d + F d < 0 B
81 simpr φ B + B +
82 81 ad2antrr φ B + d + F d < 0 B +
83 negelrp B B + B < 0
84 83 biimpa B B + B < 0
85 80 82 84 syl2anc φ B + d + F d < 0 B < 0
86 5 39 40 sylancl φ C : 0
87 0nn0 0 0
88 87 a1i φ 0 0
89 86 88 ffvelrnd φ C 0
90 4 89 eqeltrid φ A
91 90 44 7 mul2lt0rlt0 φ B < 0 0 < A
92 91 4 breqtrdi φ B < 0 0 < C 0
93 79 85 92 syl2anc φ B + d + F d < 0 0 < C 0
94 2 coefv0 F Poly F 0 = C 0
95 5 94 syl φ F 0 = C 0
96 95 ad3antrrr φ B + d + F d < 0 F 0 = C 0
97 93 96 breqtrrd φ B + d + F d < 0 0 < F 0
98 78 97 jca φ B + d + F d < 0 F d < 0 0 < F 0
99 64 66 64 67 71 74 77 98 ivth2 φ B + d + F d < 0 z 0 d F z = 0
100 0le0 0 0
101 pnfge d * d +∞
102 10 101 syl d + d +∞
103 0xr 0 *
104 pnfxr +∞ *
105 ioossioo 0 * +∞ * 0 0 d +∞ 0 d 0 +∞
106 103 104 105 mpanl12 0 0 d +∞ 0 d 0 +∞
107 100 102 106 sylancr d + 0 d 0 +∞
108 ioorp 0 +∞ = +
109 107 108 sseqtrdi d + 0 d +
110 ssrexv 0 d + z 0 d F z = 0 z + F z = 0
111 65 109 110 3syl φ B + d + F d < 0 z 0 d F z = 0 z + F z = 0
112 99 111 mpd φ B + d + F d < 0 z + F z = 0
113 63 112 syldan φ B + d + f + d f F f f D B < B z + F z = 0
114 plyf F Poly F :
115 5 114 syl φ F :
116 115 ffnd φ F Fn
117 ovex x D V
118 117 rgenw x + x D V
119 eqid x + x D = x + x D
120 119 fnmpt x + x D V x + x D Fn +
121 118 120 mp1i φ x + x D Fn +
122 cnex V
123 122 a1i φ V
124 rpssre +
125 124 70 sstri +
126 122 125 ssexi + V
127 126 a1i φ + V
128 sseqin2 + + = +
129 125 128 mpbi + = +
130 eqidd φ f F f = F f
131 eqidd φ f + x + x D = x + x D
132 simpr φ f + x = f x = f
133 132 oveq1d φ f + x = f x D = f D
134 simpr φ f + f +
135 ovexd φ f + f D V
136 131 133 134 135 fvmptd φ f + x + x D f = f D
137 116 121 123 127 129 130 136 offval φ F ÷ f x + x D = f + F f f D
138 oveq1 x = f x D = f D
139 138 cbvmptv x + x D = f + f D
140 1 2 3 139 signsplypnf F Poly F ÷ f x + x D B
141 5 140 syl φ F ÷ f x + x D B
142 137 141 eqbrtrrd φ f + F f f D B
143 115 adantr φ f + F :
144 134 rpcnd φ f + f
145 143 144 ffvelrnd φ f + F f
146 30 adantr φ f + D 0
147 144 146 expcld φ f + f D
148 134 rpne0d φ f + f 0
149 35 adantr φ f + D
150 144 148 149 expne0d φ f + f D 0
151 145 147 150 divcld φ f + F f f D
152 151 ralrimiva φ f + F f f D
153 124 a1i φ +
154 1red φ 1
155 152 153 49 154 rlim3 φ f + F f f D B e + d 1 +∞ f + d f F f f D B < e
156 142 155 mpbid φ e + d 1 +∞ f + d f F f f D B < e
157 0lt1 0 < 1
158 pnfge +∞ * +∞ +∞
159 104 158 ax-mp +∞ +∞
160 icossioo 0 * +∞ * 0 < 1 +∞ +∞ 1 +∞ 0 +∞
161 103 104 157 159 160 mp4an 1 +∞ 0 +∞
162 161 108 sseqtri 1 +∞ +
163 ssrexv 1 +∞ + d 1 +∞ f + d f F f f D B < e d + f + d f F f f D B < e
164 162 163 ax-mp d 1 +∞ f + d f F f f D B < e d + f + d f F f f D B < e
165 164 ralimi e + d 1 +∞ f + d f F f f D B < e e + d + f + d f F f f D B < e
166 156 165 syl φ e + d + f + d f F f f D B < e
167 166 adantr φ B + e + d + f + d f F f f D B < e
168 simpr φ B + e = B e = B
169 168 breq2d φ B + e = B F f f D B < e F f f D B < B
170 169 imbi2d φ B + e = B d f F f f D B < e d f F f f D B < B
171 170 rexralbidv φ B + e = B d + f + d f F f f D B < e d + f + d f F f f D B < B
172 81 171 rspcdv φ B + e + d + f + d f F f f D B < e d + f + d f F f f D B < B
173 167 172 mpd φ B + d + f + d f F f f D B < B
174 113 173 r19.29a φ B + z + F z = 0
175 simplr φ B + d + f + d f F f f D B < B d +
176 simpr φ B + d + f + d f F f f D B < B f + d f F f f D B < B
177 11 ad2antlr φ B + d + f + d f F f f D B < B d d
178 19 breq1d d + f = d F f f D B < B F d d D B < B
179 15 178 imbi12d d + f = d d f F f f D B < B d d F d d D B < B
180 13 179 rspcdv d + f + d f F f f D B < B d d F d d D B < B
181 175 176 177 180 syl3c φ B + d + f + d f F f f D B < B F d d D B < B
182 49 ad2antrr φ B + d + B
183 182 subidd φ B + d + B B = 0
184 183 adantr φ B + d + F d d D B < B B B = 0
185 5 ad2antrr φ B + d + F Poly
186 124 a1i φ B + +
187 186 sselda φ B + d + d
188 185 187 plyrecld φ B + d + F d
189 30 ad2antrr φ B + d + D 0
190 187 189 reexpcld φ B + d + d D
191 187 recnd φ B + d + d
192 simpr φ B + d + d +
193 192 rpne0d φ B + d + d 0
194 35 ad2antrr φ B + d + D
195 191 193 194 expne0d φ B + d + d D 0
196 188 190 195 redivcld φ B + d + F d d D
197 44 ad2antrr φ B + d + B
198 196 197 197 absdifltd φ B + d + F d d D B < B B B < F d d D F d d D < B + B
199 198 simprbda φ B + d + F d d D B < B B B < F d d D
200 184 199 eqbrtrrd φ B + d + F d d D B < B 0 < F d d D
201 192 194 rpexpcld φ B + d + d D +
202 188 201 gt0divd φ B + d + 0 < F d 0 < F d d D
203 202 adantr φ B + d + F d d D B < B 0 < F d 0 < F d d D
204 200 203 mpbird φ B + d + F d d D B < B 0 < F d
205 181 204 syldan φ B + d + f + d f F f f D B < B 0 < F d
206 0red φ B + d + 0 < F d 0
207 simplr φ B + d + 0 < F d d +
208 207 rpred φ B + d + 0 < F d d
209 207 rpgt0d φ B + d + 0 < F d 0 < d
210 39 208 68 sylancr φ B + d + 0 < F d 0 d
211 210 70 sstrdi φ B + d + 0 < F d 0 d
212 73 ad3antrrr φ B + d + 0 < F d F : cn
213 5 ad4antr φ B + d + 0 < F d x 0 d F Poly
214 210 sselda φ B + d + 0 < F d x 0 d x
215 213 214 plyrecld φ B + d + 0 < F d x 0 d F x
216 95 ad3antrrr φ B + d + 0 < F d F 0 = C 0
217 simplll φ B + d + 0 < F d φ
218 simpr1 φ B + d + 0 < F d B +
219 218 rpgt0d φ B + d + 0 < F d 0 < B
220 219 3anassrs φ B + d + 0 < F d 0 < B
221 90 44 7 mul2lt0rgt0 φ 0 < B A < 0
222 217 220 221 syl2anc φ B + d + 0 < F d A < 0
223 4 222 eqbrtrrid φ B + d + 0 < F d C 0 < 0
224 216 223 eqbrtrd φ B + d + 0 < F d F 0 < 0
225 simpr φ B + d + 0 < F d 0 < F d
226 224 225 jca φ B + d + 0 < F d F 0 < 0 0 < F d
227 206 208 206 209 211 212 215 226 ivth φ B + d + 0 < F d z 0 d F z = 0
228 207 109 110 3syl φ B + d + 0 < F d z 0 d F z = 0 z + F z = 0
229 227 228 mpd φ B + d + 0 < F d z + F z = 0
230 205 229 syldan φ B + d + f + d f F f f D B < B z + F z = 0
231 166 adantr φ B + e + d + f + d f F f f D B < e
232 simpr φ B + B +
233 simpr φ B + e = B e = B
234 233 breq2d φ B + e = B F f f D B < e F f f D B < B
235 234 imbi2d φ B + e = B d f F f f D B < e d f F f f D B < B
236 235 rexralbidv φ B + e = B d + f + d f F f f D B < e d + f + d f F f f D B < B
237 232 236 rspcdv φ B + e + d + f + d f F f f D B < e d + f + d f F f f D B < B
238 231 237 mpd φ B + d + f + d f F f f D B < B
239 230 238 r19.29a φ B + z + F z = 0
240 1 2 dgreq0 F Poly F = 0 𝑝 C D = 0
241 5 240 syl φ F = 0 𝑝 C D = 0
242 241 necon3bid φ F 0 𝑝 C D 0
243 6 242 mpbid φ C D 0
244 3 neeq1i B 0 C D 0
245 243 244 sylibr φ B 0
246 rpneg B B 0 B + ¬ B +
247 246 biimprd B B 0 ¬ B + B +
248 247 orrd B B 0 B + B +
249 44 245 248 syl2anc φ B + B +
250 174 239 249 mpjaodan φ z + F z = 0