| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsgrpd.y |
|- Y = ( S Xs_ R ) |
| 2 |
|
prdsgrpd.i |
|- ( ph -> I e. W ) |
| 3 |
|
prdsgrpd.s |
|- ( ph -> S e. V ) |
| 4 |
|
prdsgrpd.r |
|- ( ph -> R : I --> Grp ) |
| 5 |
|
prdsinvgd.b |
|- B = ( Base ` Y ) |
| 6 |
|
prdsinvgd.n |
|- N = ( invg ` Y ) |
| 7 |
|
prdsinvgd.x |
|- ( ph -> X e. B ) |
| 8 |
|
eqid |
|- ( +g ` Y ) = ( +g ` Y ) |
| 9 |
3
|
elexd |
|- ( ph -> S e. _V ) |
| 10 |
2
|
elexd |
|- ( ph -> I e. _V ) |
| 11 |
|
eqid |
|- ( 0g o. R ) = ( 0g o. R ) |
| 12 |
|
eqid |
|- ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) |
| 13 |
1 5 8 9 10 4 7 11 12
|
prdsinvlem |
|- ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) e. B /\ ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g o. R ) ) ) |
| 14 |
13
|
simprd |
|- ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g o. R ) ) |
| 15 |
|
grpmnd |
|- ( a e. Grp -> a e. Mnd ) |
| 16 |
15
|
ssriv |
|- Grp C_ Mnd |
| 17 |
|
fss |
|- ( ( R : I --> Grp /\ Grp C_ Mnd ) -> R : I --> Mnd ) |
| 18 |
4 16 17
|
sylancl |
|- ( ph -> R : I --> Mnd ) |
| 19 |
1 2 3 18
|
prds0g |
|- ( ph -> ( 0g o. R ) = ( 0g ` Y ) ) |
| 20 |
14 19
|
eqtrd |
|- ( ph -> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g ` Y ) ) |
| 21 |
1 2 3 4
|
prdsgrpd |
|- ( ph -> Y e. Grp ) |
| 22 |
13
|
simpld |
|- ( ph -> ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) e. B ) |
| 23 |
|
eqid |
|- ( 0g ` Y ) = ( 0g ` Y ) |
| 24 |
5 8 23 6
|
grpinvid2 |
|- ( ( Y e. Grp /\ X e. B /\ ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) e. B ) -> ( ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) <-> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g ` Y ) ) ) |
| 25 |
21 7 22 24
|
syl3anc |
|- ( ph -> ( ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) <-> ( ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ( +g ` Y ) X ) = ( 0g ` Y ) ) ) |
| 26 |
20 25
|
mpbird |
|- ( ph -> ( N ` X ) = ( x e. I |-> ( ( invg ` ( R ` x ) ) ` ( X ` x ) ) ) ) |