Metamath Proof Explorer


Theorem preleqg

Description: Equality of two unordered pairs when one member of each pair contains the other member. Closed form of preleq . (Contributed by AV, 15-Jun-2022)

Ref Expression
Assertion preleqg
|- ( ( ( A e. B /\ B e. V /\ C e. D ) /\ { A , B } = { C , D } ) -> ( A = C /\ B = D ) )

Proof

Step Hyp Ref Expression
1 elneq
 |-  ( A e. B -> A =/= B )
2 1 3ad2ant1
 |-  ( ( A e. B /\ B e. V /\ C e. D ) -> A =/= B )
3 preq12nebg
 |-  ( ( A e. B /\ B e. V /\ A =/= B ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) )
4 2 3 syld3an3
 |-  ( ( A e. B /\ B e. V /\ C e. D ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) )
5 eleq12
 |-  ( ( A = D /\ B = C ) -> ( A e. B <-> D e. C ) )
6 elnotel
 |-  ( D e. C -> -. C e. D )
7 6 pm2.21d
 |-  ( D e. C -> ( C e. D -> ( A = C /\ B = D ) ) )
8 5 7 syl6bi
 |-  ( ( A = D /\ B = C ) -> ( A e. B -> ( C e. D -> ( A = C /\ B = D ) ) ) )
9 8 com3l
 |-  ( A e. B -> ( C e. D -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) )
10 9 a1d
 |-  ( A e. B -> ( B e. V -> ( C e. D -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) ) )
11 10 3imp
 |-  ( ( A e. B /\ B e. V /\ C e. D ) -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) )
12 11 com12
 |-  ( ( A = D /\ B = C ) -> ( ( A e. B /\ B e. V /\ C e. D ) -> ( A = C /\ B = D ) ) )
13 12 jao1i
 |-  ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( ( A e. B /\ B e. V /\ C e. D ) -> ( A = C /\ B = D ) ) )
14 13 com12
 |-  ( ( A e. B /\ B e. V /\ C e. D ) -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( A = C /\ B = D ) ) )
15 4 14 sylbid
 |-  ( ( A e. B /\ B e. V /\ C e. D ) -> ( { A , B } = { C , D } -> ( A = C /\ B = D ) ) )
16 15 imp
 |-  ( ( ( A e. B /\ B e. V /\ C e. D ) /\ { A , B } = { C , D } ) -> ( A = C /\ B = D ) )