| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspval2.0 |  |-  .0. = ( 0g ` V ) | 
						
							| 2 |  | prjspval2.b |  |-  B = ( ( Base ` V ) \ { .0. } ) | 
						
							| 3 |  | prjspval2.n |  |-  N = ( LSpan ` V ) | 
						
							| 4 | 1 | sneqi |  |-  { .0. } = { ( 0g ` V ) } | 
						
							| 5 | 4 | difeq2i |  |-  ( ( Base ` V ) \ { .0. } ) = ( ( Base ` V ) \ { ( 0g ` V ) } ) | 
						
							| 6 | 2 5 | eqtri |  |-  B = ( ( Base ` V ) \ { ( 0g ` V ) } ) | 
						
							| 7 |  | eqid |  |-  ( .s ` V ) = ( .s ` V ) | 
						
							| 8 |  | eqid |  |-  ( Scalar ` V ) = ( Scalar ` V ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( Scalar ` V ) ) = ( Base ` ( Scalar ` V ) ) | 
						
							| 10 | 6 7 8 9 | prjspval |  |-  ( V e. LVec -> ( PrjSp ` V ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } ) ) | 
						
							| 11 |  | dfqs3 |  |-  ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } ) = U_ z e. B { [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } } | 
						
							| 12 | 11 | a1i |  |-  ( V e. LVec -> ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } ) = U_ z e. B { [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } } ) | 
						
							| 13 |  | eqid |  |-  { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } | 
						
							| 14 | 13 6 8 7 9 3 | prjspeclsp |  |-  ( ( V e. LVec /\ z e. B ) -> [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } = ( ( N ` { z } ) \ { ( 0g ` V ) } ) ) | 
						
							| 15 | 4 | difeq2i |  |-  ( ( N ` { z } ) \ { .0. } ) = ( ( N ` { z } ) \ { ( 0g ` V ) } ) | 
						
							| 16 | 14 15 | eqtr4di |  |-  ( ( V e. LVec /\ z e. B ) -> [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } = ( ( N ` { z } ) \ { .0. } ) ) | 
						
							| 17 | 16 | sneqd |  |-  ( ( V e. LVec /\ z e. B ) -> { [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } } = { ( ( N ` { z } ) \ { .0. } ) } ) | 
						
							| 18 | 17 | iuneq2dv |  |-  ( V e. LVec -> U_ z e. B { [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } } = U_ z e. B { ( ( N ` { z } ) \ { .0. } ) } ) | 
						
							| 19 | 10 12 18 | 3eqtrd |  |-  ( V e. LVec -> ( PrjSp ` V ) = U_ z e. B { ( ( N ` { z } ) \ { .0. } ) } ) |