Step |
Hyp |
Ref |
Expression |
1 |
|
prjspval2.0 |
|- .0. = ( 0g ` V ) |
2 |
|
prjspval2.b |
|- B = ( ( Base ` V ) \ { .0. } ) |
3 |
|
prjspval2.n |
|- N = ( LSpan ` V ) |
4 |
1
|
sneqi |
|- { .0. } = { ( 0g ` V ) } |
5 |
4
|
difeq2i |
|- ( ( Base ` V ) \ { .0. } ) = ( ( Base ` V ) \ { ( 0g ` V ) } ) |
6 |
2 5
|
eqtri |
|- B = ( ( Base ` V ) \ { ( 0g ` V ) } ) |
7 |
|
eqid |
|- ( .s ` V ) = ( .s ` V ) |
8 |
|
eqid |
|- ( Scalar ` V ) = ( Scalar ` V ) |
9 |
|
eqid |
|- ( Base ` ( Scalar ` V ) ) = ( Base ` ( Scalar ` V ) ) |
10 |
6 7 8 9
|
prjspval |
|- ( V e. LVec -> ( PrjSp ` V ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } ) ) |
11 |
|
dfqs3 |
|- ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } ) = U_ z e. B { [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } } |
12 |
11
|
a1i |
|- ( V e. LVec -> ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } ) = U_ z e. B { [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } } ) |
13 |
|
eqid |
|- { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } |
14 |
13 6 8 7 9 3
|
prjspeclsp |
|- ( ( V e. LVec /\ z e. B ) -> [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } = ( ( N ` { z } ) \ { ( 0g ` V ) } ) ) |
15 |
4
|
difeq2i |
|- ( ( N ` { z } ) \ { .0. } ) = ( ( N ` { z } ) \ { ( 0g ` V ) } ) |
16 |
14 15
|
eqtr4di |
|- ( ( V e. LVec /\ z e. B ) -> [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } = ( ( N ` { z } ) \ { .0. } ) ) |
17 |
16
|
sneqd |
|- ( ( V e. LVec /\ z e. B ) -> { [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } } = { ( ( N ` { z } ) \ { .0. } ) } ) |
18 |
17
|
iuneq2dv |
|- ( V e. LVec -> U_ z e. B { [ z ] { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. ( Base ` ( Scalar ` V ) ) x = ( l ( .s ` V ) y ) ) } } = U_ z e. B { ( ( N ` { z } ) \ { .0. } ) } ) |
19 |
10 12 18
|
3eqtrd |
|- ( V e. LVec -> ( PrjSp ` V ) = U_ z e. B { ( ( N ` { z } ) \ { .0. } ) } ) |