| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspval2.0 | ⊢  0   =  ( 0g ‘ 𝑉 ) | 
						
							| 2 |  | prjspval2.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑉 )  ∖  {  0  } ) | 
						
							| 3 |  | prjspval2.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑉 ) | 
						
							| 4 | 1 | sneqi | ⊢ {  0  }  =  { ( 0g ‘ 𝑉 ) } | 
						
							| 5 | 4 | difeq2i | ⊢ ( ( Base ‘ 𝑉 )  ∖  {  0  } )  =  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 6 | 2 5 | eqtri | ⊢ 𝐵  =  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 7 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑉 )  =  (  ·𝑠  ‘ 𝑉 ) | 
						
							| 8 |  | eqid | ⊢ ( Scalar ‘ 𝑉 )  =  ( Scalar ‘ 𝑉 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑉 ) )  =  ( Base ‘ ( Scalar ‘ 𝑉 ) ) | 
						
							| 10 | 6 7 8 9 | prjspval | ⊢ ( 𝑉  ∈  LVec  →  ( ℙ𝕣𝕠𝕛 ‘ 𝑉 )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) } ) ) | 
						
							| 11 |  | dfqs3 | ⊢ ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) } )  =  ∪  𝑧  ∈  𝐵 { [ 𝑧 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) } } | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑉  ∈  LVec  →  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) } )  =  ∪  𝑧  ∈  𝐵 { [ 𝑧 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) } } ) | 
						
							| 13 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) } | 
						
							| 14 | 13 6 8 7 9 3 | prjspeclsp | ⊢ ( ( 𝑉  ∈  LVec  ∧  𝑧  ∈  𝐵 )  →  [ 𝑧 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) }  =  ( ( 𝑁 ‘ { 𝑧 } )  ∖  { ( 0g ‘ 𝑉 ) } ) ) | 
						
							| 15 | 4 | difeq2i | ⊢ ( ( 𝑁 ‘ { 𝑧 } )  ∖  {  0  } )  =  ( ( 𝑁 ‘ { 𝑧 } )  ∖  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 16 | 14 15 | eqtr4di | ⊢ ( ( 𝑉  ∈  LVec  ∧  𝑧  ∈  𝐵 )  →  [ 𝑧 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) }  =  ( ( 𝑁 ‘ { 𝑧 } )  ∖  {  0  } ) ) | 
						
							| 17 | 16 | sneqd | ⊢ ( ( 𝑉  ∈  LVec  ∧  𝑧  ∈  𝐵 )  →  { [ 𝑧 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) } }  =  { ( ( 𝑁 ‘ { 𝑧 } )  ∖  {  0  } ) } ) | 
						
							| 18 | 17 | iuneq2dv | ⊢ ( 𝑉  ∈  LVec  →  ∪  𝑧  ∈  𝐵 { [ 𝑧 ] { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑉 ) 𝑦 ) ) } }  =  ∪  𝑧  ∈  𝐵 { ( ( 𝑁 ‘ { 𝑧 } )  ∖  {  0  } ) } ) | 
						
							| 19 | 10 12 18 | 3eqtrd | ⊢ ( 𝑉  ∈  LVec  →  ( ℙ𝕣𝕠𝕛 ‘ 𝑉 )  =  ∪  𝑧  ∈  𝐵 { ( ( 𝑁 ‘ { 𝑧 } )  ∖  {  0  } ) } ) |