Step |
Hyp |
Ref |
Expression |
1 |
|
prjspval2.0 |
⊢ 0 = ( 0g ‘ 𝑉 ) |
2 |
|
prjspval2.b |
⊢ 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { 0 } ) |
3 |
|
prjspval2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑉 ) |
4 |
1
|
sneqi |
⊢ { 0 } = { ( 0g ‘ 𝑉 ) } |
5 |
4
|
difeq2i |
⊢ ( ( Base ‘ 𝑉 ) ∖ { 0 } ) = ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) |
6 |
2 5
|
eqtri |
⊢ 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) |
7 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑉 ) = ( ·𝑠 ‘ 𝑉 ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑉 ) = ( Scalar ‘ 𝑉 ) |
9 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑉 ) ) = ( Base ‘ ( Scalar ‘ 𝑉 ) ) |
10 |
6 7 8 9
|
prjspval |
⊢ ( 𝑉 ∈ LVec → ( ℙ𝕣𝕠𝕛 ‘ 𝑉 ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } ) ) |
11 |
|
dfqs3 |
⊢ ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } ) = ∪ 𝑧 ∈ 𝐵 { [ 𝑧 ] { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } } |
12 |
11
|
a1i |
⊢ ( 𝑉 ∈ LVec → ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } ) = ∪ 𝑧 ∈ 𝐵 { [ 𝑧 ] { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } } ) |
13 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } |
14 |
13 6 8 7 9 3
|
prjspeclsp |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵 ) → [ 𝑧 ] { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } = ( ( 𝑁 ‘ { 𝑧 } ) ∖ { ( 0g ‘ 𝑉 ) } ) ) |
15 |
4
|
difeq2i |
⊢ ( ( 𝑁 ‘ { 𝑧 } ) ∖ { 0 } ) = ( ( 𝑁 ‘ { 𝑧 } ) ∖ { ( 0g ‘ 𝑉 ) } ) |
16 |
14 15
|
eqtr4di |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵 ) → [ 𝑧 ] { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } = ( ( 𝑁 ‘ { 𝑧 } ) ∖ { 0 } ) ) |
17 |
16
|
sneqd |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑧 ∈ 𝐵 ) → { [ 𝑧 ] { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } } = { ( ( 𝑁 ‘ { 𝑧 } ) ∖ { 0 } ) } ) |
18 |
17
|
iuneq2dv |
⊢ ( 𝑉 ∈ LVec → ∪ 𝑧 ∈ 𝐵 { [ 𝑧 ] { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑉 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑉 ) 𝑦 ) ) } } = ∪ 𝑧 ∈ 𝐵 { ( ( 𝑁 ‘ { 𝑧 } ) ∖ { 0 } ) } ) |
19 |
10 12 18
|
3eqtrd |
⊢ ( 𝑉 ∈ LVec → ( ℙ𝕣𝕠𝕛 ‘ 𝑉 ) = ∪ 𝑧 ∈ 𝐵 { ( ( 𝑁 ‘ { 𝑧 } ) ∖ { 0 } ) } ) |