Step |
Hyp |
Ref |
Expression |
1 |
|
prjsprel.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
2 |
|
prjspertr.b |
⊢ 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) |
3 |
|
prjspertr.s |
⊢ 𝑆 = ( Scalar ‘ 𝑉 ) |
4 |
|
prjspertr.x |
⊢ · = ( ·𝑠 ‘ 𝑉 ) |
5 |
|
prjspertr.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
prjsprellsp.n |
⊢ 𝑁 = ( LSpan ‘ 𝑉 ) |
7 |
1
|
cnveqi |
⊢ ◡ ∼ = ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
8 |
|
cnvopab |
⊢ ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
9 |
7 8
|
eqtri |
⊢ ◡ ∼ = { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
10 |
9
|
eceq2i |
⊢ [ 𝑋 ] ◡ ∼ = [ 𝑋 ] { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
11 |
|
df-ec |
⊢ [ 𝑋 ] { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } = ( { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } “ { 𝑋 } ) |
12 |
11
|
a1i |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } = ( { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } “ { 𝑋 } ) ) |
13 |
|
imaopab |
⊢ ( { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } “ { 𝑋 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑋 } ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
14 |
13
|
a1i |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → ( { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } “ { 𝑋 } ) = { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑋 } ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } ) |
15 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ { 𝑋 } ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝑋 } ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ) ) |
16 |
|
velsn |
⊢ ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 ) |
17 |
16
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑋 } ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ) ↔ ( 𝑦 = 𝑋 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ) ) |
18 |
|
eleq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑙 · 𝑦 ) = ( 𝑙 · 𝑋 ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑦 = 𝑋 → ( 𝑥 = ( 𝑙 · 𝑦 ) ↔ 𝑥 = ( 𝑙 · 𝑋 ) ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑦 = 𝑋 → ( ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ↔ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) |
23 |
19 22
|
anbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ) |
24 |
23
|
pm5.32i |
⊢ ( ( 𝑦 = 𝑋 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ) ↔ ( 𝑦 = 𝑋 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ) |
25 |
17 24
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝑋 } ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ) ↔ ( 𝑦 = 𝑋 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ) |
26 |
25
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ { 𝑋 } ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ) ↔ ∃ 𝑦 ( 𝑦 = 𝑋 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ) |
27 |
|
19.41v |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑋 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ↔ ( ∃ 𝑦 𝑦 = 𝑋 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ) |
28 |
|
elisset |
⊢ ( 𝑋 ∈ 𝐵 → ∃ 𝑦 𝑦 = 𝑋 ) |
29 |
28
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) → ∃ 𝑦 𝑦 = 𝑋 ) |
30 |
29
|
pm4.71ri |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ↔ ( ∃ 𝑦 𝑦 = 𝑋 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ) |
31 |
27 30
|
bitr4i |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝑋 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) |
32 |
15 26 31
|
3bitri |
⊢ ( ∃ 𝑦 ∈ { 𝑋 } ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) |
33 |
32
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑋 } ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } |
34 |
|
iba |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) ) |
35 |
34
|
bicomd |
⊢ ( 𝑋 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
36 |
35
|
anbi1d |
⊢ ( 𝑋 ∈ 𝐵 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ) |
37 |
36
|
abbidv |
⊢ ( 𝑋 ∈ 𝐵 → { 𝑥 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } ) |
38 |
33 37
|
syl5eq |
⊢ ( 𝑋 ∈ 𝐵 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑋 } ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } ) |
39 |
38
|
adantl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑋 } ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } ) |
40 |
12 14 39
|
3eqtrd |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] { 〈 𝑦 , 𝑥 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } ) |
41 |
10 40
|
syl5eq |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] ◡ ∼ = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } ) |
42 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } |
43 |
42
|
a1i |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → { 𝑥 ∈ 𝐵 ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } ) |
44 |
2
|
rabeqi |
⊢ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } = { 𝑥 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } |
45 |
|
rabdif |
⊢ ( { 𝑥 ∈ ( Base ‘ 𝑉 ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ∖ { ( 0g ‘ 𝑉 ) } ) = { 𝑥 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } |
46 |
45
|
a1i |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → ( { 𝑥 ∈ ( Base ‘ 𝑉 ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ∖ { ( 0g ‘ 𝑉 ) } ) = { 𝑥 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ) |
47 |
44 46
|
eqtr4id |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → { 𝑥 ∈ 𝐵 ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } = ( { 𝑥 ∈ ( Base ‘ 𝑉 ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ∖ { ( 0g ‘ 𝑉 ) } ) ) |
48 |
41 43 47
|
3eqtr2d |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] ◡ ∼ = ( { 𝑥 ∈ ( Base ‘ 𝑉 ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ∖ { ( 0g ‘ 𝑉 ) } ) ) |
49 |
1 2 3 4 5
|
prjsper |
⊢ ( 𝑉 ∈ LVec → ∼ Er 𝐵 ) |
50 |
49
|
adantr |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → ∼ Er 𝐵 ) |
51 |
|
ercnv |
⊢ ( ∼ Er 𝐵 → ◡ ∼ = ∼ ) |
52 |
51
|
eqcomd |
⊢ ( ∼ Er 𝐵 → ∼ = ◡ ∼ ) |
53 |
50 52
|
syl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → ∼ = ◡ ∼ ) |
54 |
53
|
eceq2d |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] ∼ = [ 𝑋 ] ◡ ∼ ) |
55 |
|
lveclmod |
⊢ ( 𝑉 ∈ LVec → 𝑉 ∈ LMod ) |
56 |
|
difss |
⊢ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) ⊆ ( Base ‘ 𝑉 ) |
57 |
2 56
|
eqsstri |
⊢ 𝐵 ⊆ ( Base ‘ 𝑉 ) |
58 |
57
|
sseli |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
59 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
60 |
3 5 59 4 6
|
lspsn |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑉 ) ) → ( 𝑁 ‘ { 𝑋 } ) = { 𝑥 ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ) |
61 |
55 58 60
|
syl2an |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ { 𝑋 } ) = { 𝑥 ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ) |
62 |
|
simpr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑙 ∈ 𝐾 ) ∧ 𝑥 = ( 𝑙 · 𝑋 ) ) → 𝑥 = ( 𝑙 · 𝑋 ) ) |
63 |
55
|
adantr |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → 𝑉 ∈ LMod ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑙 ∈ 𝐾 ) → 𝑉 ∈ LMod ) |
65 |
|
simpr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑙 ∈ 𝐾 ) → 𝑙 ∈ 𝐾 ) |
66 |
58
|
ad2antlr |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑙 ∈ 𝐾 ) → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
67 |
59 3 4 5
|
lmodvscl |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑙 ∈ 𝐾 ∧ 𝑋 ∈ ( Base ‘ 𝑉 ) ) → ( 𝑙 · 𝑋 ) ∈ ( Base ‘ 𝑉 ) ) |
68 |
64 65 66 67
|
syl3anc |
⊢ ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑙 ∈ 𝐾 ) → ( 𝑙 · 𝑋 ) ∈ ( Base ‘ 𝑉 ) ) |
69 |
68
|
adantr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑙 ∈ 𝐾 ) ∧ 𝑥 = ( 𝑙 · 𝑋 ) ) → ( 𝑙 · 𝑋 ) ∈ ( Base ‘ 𝑉 ) ) |
70 |
62 69
|
eqeltrd |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑙 ∈ 𝐾 ) ∧ 𝑥 = ( 𝑙 · 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑉 ) ) |
71 |
70
|
rexlimdva2 |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) → 𝑥 ∈ ( Base ‘ 𝑉 ) ) ) |
72 |
71
|
pm4.71rd |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) ) ) |
73 |
72
|
abbidv |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → { 𝑥 ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } ) |
74 |
|
df-rab |
⊢ { 𝑥 ∈ ( Base ‘ 𝑉 ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( Base ‘ 𝑉 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) ) } |
75 |
73 74
|
eqtr4di |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → { 𝑥 ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } = { 𝑥 ∈ ( Base ‘ 𝑉 ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ) |
76 |
61 75
|
eqtrd |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ { 𝑋 } ) = { 𝑥 ∈ ( Base ‘ 𝑉 ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ) |
77 |
76
|
difeq1d |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ { 𝑋 } ) ∖ { ( 0g ‘ 𝑉 ) } ) = ( { 𝑥 ∈ ( Base ‘ 𝑉 ) ∣ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑋 ) } ∖ { ( 0g ‘ 𝑉 ) } ) ) |
78 |
48 54 77
|
3eqtr4d |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] ∼ = ( ( 𝑁 ‘ { 𝑋 } ) ∖ { ( 0g ‘ 𝑉 ) } ) ) |