| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodf1.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 | 1 | prodf1 |  |-  ( k e. Z -> ( seq M ( x. , ( Z X. { 1 } ) ) ` k ) = 1 ) | 
						
							| 3 |  | 1ex |  |-  1 e. _V | 
						
							| 4 | 3 | fvconst2 |  |-  ( k e. Z -> ( ( Z X. { 1 } ) ` k ) = 1 ) | 
						
							| 5 | 2 4 | eqtr4d |  |-  ( k e. Z -> ( seq M ( x. , ( Z X. { 1 } ) ) ` k ) = ( ( Z X. { 1 } ) ` k ) ) | 
						
							| 6 | 5 | rgen |  |-  A. k e. Z ( seq M ( x. , ( Z X. { 1 } ) ) ` k ) = ( ( Z X. { 1 } ) ` k ) | 
						
							| 7 |  | seqfn |  |-  ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) Fn ( ZZ>= ` M ) ) | 
						
							| 8 | 1 | fneq2i |  |-  ( seq M ( x. , ( Z X. { 1 } ) ) Fn Z <-> seq M ( x. , ( Z X. { 1 } ) ) Fn ( ZZ>= ` M ) ) | 
						
							| 9 | 7 8 | sylibr |  |-  ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) Fn Z ) | 
						
							| 10 | 3 | fconst |  |-  ( Z X. { 1 } ) : Z --> { 1 } | 
						
							| 11 |  | ffn |  |-  ( ( Z X. { 1 } ) : Z --> { 1 } -> ( Z X. { 1 } ) Fn Z ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( Z X. { 1 } ) Fn Z | 
						
							| 13 |  | eqfnfv |  |-  ( ( seq M ( x. , ( Z X. { 1 } ) ) Fn Z /\ ( Z X. { 1 } ) Fn Z ) -> ( seq M ( x. , ( Z X. { 1 } ) ) = ( Z X. { 1 } ) <-> A. k e. Z ( seq M ( x. , ( Z X. { 1 } ) ) ` k ) = ( ( Z X. { 1 } ) ` k ) ) ) | 
						
							| 14 | 9 12 13 | sylancl |  |-  ( M e. ZZ -> ( seq M ( x. , ( Z X. { 1 } ) ) = ( Z X. { 1 } ) <-> A. k e. Z ( seq M ( x. , ( Z X. { 1 } ) ) ` k ) = ( ( Z X. { 1 } ) ` k ) ) ) | 
						
							| 15 | 6 14 | mpbiri |  |-  ( M e. ZZ -> seq M ( x. , ( Z X. { 1 } ) ) = ( Z X. { 1 } ) ) |