Description: Lemma for prter1 , prter2 , prter3 and prtex . (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Mario Carneiro, 11-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | prtlem5 | |- ( [ s / v ] [ r / u ] E. x e. A ( u e. x /\ v e. x ) <-> E. x e. A ( r e. x /\ s e. x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 | |- ( u = r -> ( u e. x <-> r e. x ) ) |
|
2 | elequ1 | |- ( v = s -> ( v e. x <-> s e. x ) ) |
|
3 | 1 2 | bi2anan9r | |- ( ( v = s /\ u = r ) -> ( ( u e. x /\ v e. x ) <-> ( r e. x /\ s e. x ) ) ) |
4 | 3 | rexbidv | |- ( ( v = s /\ u = r ) -> ( E. x e. A ( u e. x /\ v e. x ) <-> E. x e. A ( r e. x /\ s e. x ) ) ) |
5 | 4 | 2sbievw | |- ( [ s / v ] [ r / u ] E. x e. A ( u e. x /\ v e. x ) <-> E. x e. A ( r e. x /\ s e. x ) ) |