Description: Lemma for prter1 , prter2 , prter3 and prtex . (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Mario Carneiro, 11-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | prtlem5 | ⊢ ( [ 𝑠 / 𝑣 ] [ 𝑟 / 𝑢 ] ∃ 𝑥 ∈ 𝐴 ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 | ⊢ ( 𝑢 = 𝑟 → ( 𝑢 ∈ 𝑥 ↔ 𝑟 ∈ 𝑥 ) ) | |
2 | elequ1 | ⊢ ( 𝑣 = 𝑠 → ( 𝑣 ∈ 𝑥 ↔ 𝑠 ∈ 𝑥 ) ) | |
3 | 1 2 | bi2anan9r | ⊢ ( ( 𝑣 = 𝑠 ∧ 𝑢 = 𝑟 ) → ( ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ( 𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥 ) ) ) |
4 | 3 | rexbidv | ⊢ ( ( 𝑣 = 𝑠 ∧ 𝑢 = 𝑟 ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥 ) ) ) |
5 | 4 | 2sbievw | ⊢ ( [ 𝑠 / 𝑣 ] [ 𝑟 / 𝑢 ] ∃ 𝑥 ∈ 𝐴 ( 𝑢 ∈ 𝑥 ∧ 𝑣 ∈ 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑟 ∈ 𝑥 ∧ 𝑠 ∈ 𝑥 ) ) |