Metamath Proof Explorer


Theorem prtlem5

Description: Lemma for prter1 , prter2 , prter3 and prtex . (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion prtlem5 ( [ 𝑠 / 𝑣 ] [ 𝑟 / 𝑢 ] ∃ 𝑥𝐴 ( 𝑢𝑥𝑣𝑥 ) ↔ ∃ 𝑥𝐴 ( 𝑟𝑥𝑠𝑥 ) )

Proof

Step Hyp Ref Expression
1 elequ1 ( 𝑢 = 𝑟 → ( 𝑢𝑥𝑟𝑥 ) )
2 elequ1 ( 𝑣 = 𝑠 → ( 𝑣𝑥𝑠𝑥 ) )
3 1 2 bi2anan9r ( ( 𝑣 = 𝑠𝑢 = 𝑟 ) → ( ( 𝑢𝑥𝑣𝑥 ) ↔ ( 𝑟𝑥𝑠𝑥 ) ) )
4 3 rexbidv ( ( 𝑣 = 𝑠𝑢 = 𝑟 ) → ( ∃ 𝑥𝐴 ( 𝑢𝑥𝑣𝑥 ) ↔ ∃ 𝑥𝐴 ( 𝑟𝑥𝑠𝑥 ) ) )
5 4 2sbievw ( [ 𝑠 / 𝑣 ] [ 𝑟 / 𝑢 ] ∃ 𝑥𝐴 ( 𝑢𝑥𝑣𝑥 ) ↔ ∃ 𝑥𝐴 ( 𝑟𝑥𝑠𝑥 ) )