Metamath Proof Explorer


Theorem pwpwuni

Description: Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion pwpwuni
|- ( A e. V -> ( A e. ~P ~P B <-> U. A e. ~P B ) )

Proof

Step Hyp Ref Expression
1 elpwg
 |-  ( A e. V -> ( A e. ~P ~P B <-> A C_ ~P B ) )
2 sspwuni
 |-  ( A C_ ~P B <-> U. A C_ B )
3 2 a1i
 |-  ( A e. V -> ( A C_ ~P B <-> U. A C_ B ) )
4 uniexg
 |-  ( A e. V -> U. A e. _V )
5 elpwg
 |-  ( U. A e. _V -> ( U. A e. ~P B <-> U. A C_ B ) )
6 4 5 syl
 |-  ( A e. V -> ( U. A e. ~P B <-> U. A C_ B ) )
7 6 bicomd
 |-  ( A e. V -> ( U. A C_ B <-> U. A e. ~P B ) )
8 1 3 7 3bitrd
 |-  ( A e. V -> ( A e. ~P ~P B <-> U. A e. ~P B ) )