| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsle.y |  |-  Y = ( R ^s I ) | 
						
							| 2 |  | pwsle.v |  |-  B = ( Base ` Y ) | 
						
							| 3 |  | pwsle.o |  |-  O = ( le ` R ) | 
						
							| 4 |  | pwsle.l |  |-  .<_ = ( le ` Y ) | 
						
							| 5 |  | pwsleval.r |  |-  ( ph -> R e. V ) | 
						
							| 6 |  | pwsleval.i |  |-  ( ph -> I e. W ) | 
						
							| 7 |  | pwsleval.a |  |-  ( ph -> F e. B ) | 
						
							| 8 |  | pwsleval.b |  |-  ( ph -> G e. B ) | 
						
							| 9 | 1 2 3 4 | pwsle |  |-  ( ( R e. V /\ I e. W ) -> .<_ = ( oR O i^i ( B X. B ) ) ) | 
						
							| 10 | 5 6 9 | syl2anc |  |-  ( ph -> .<_ = ( oR O i^i ( B X. B ) ) ) | 
						
							| 11 | 10 | breqd |  |-  ( ph -> ( F .<_ G <-> F ( oR O i^i ( B X. B ) ) G ) ) | 
						
							| 12 |  | brinxp |  |-  ( ( F e. B /\ G e. B ) -> ( F oR O G <-> F ( oR O i^i ( B X. B ) ) G ) ) | 
						
							| 13 | 7 8 12 | syl2anc |  |-  ( ph -> ( F oR O G <-> F ( oR O i^i ( B X. B ) ) G ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 15 | 1 14 2 5 6 7 | pwselbas |  |-  ( ph -> F : I --> ( Base ` R ) ) | 
						
							| 16 | 15 | ffnd |  |-  ( ph -> F Fn I ) | 
						
							| 17 | 1 14 2 5 6 8 | pwselbas |  |-  ( ph -> G : I --> ( Base ` R ) ) | 
						
							| 18 | 17 | ffnd |  |-  ( ph -> G Fn I ) | 
						
							| 19 |  | inidm |  |-  ( I i^i I ) = I | 
						
							| 20 |  | eqidd |  |-  ( ( ph /\ x e. I ) -> ( F ` x ) = ( F ` x ) ) | 
						
							| 21 |  | eqidd |  |-  ( ( ph /\ x e. I ) -> ( G ` x ) = ( G ` x ) ) | 
						
							| 22 | 16 18 7 8 19 20 21 | ofrfvalg |  |-  ( ph -> ( F oR O G <-> A. x e. I ( F ` x ) O ( G ` x ) ) ) | 
						
							| 23 | 11 13 22 | 3bitr2d |  |-  ( ph -> ( F .<_ G <-> A. x e. I ( F ` x ) O ( G ` x ) ) ) |