| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsvscaval.y |
|- Y = ( R ^s I ) |
| 2 |
|
pwsvscaval.b |
|- B = ( Base ` Y ) |
| 3 |
|
pwsvscaval.s |
|- .x. = ( .s ` R ) |
| 4 |
|
pwsvscaval.t |
|- .xb = ( .s ` Y ) |
| 5 |
|
pwsvscaval.f |
|- F = ( Scalar ` R ) |
| 6 |
|
pwsvscaval.k |
|- K = ( Base ` F ) |
| 7 |
|
pwsvscaval.r |
|- ( ph -> R e. V ) |
| 8 |
|
pwsvscaval.i |
|- ( ph -> I e. W ) |
| 9 |
|
pwsvscaval.a |
|- ( ph -> A e. K ) |
| 10 |
|
pwsvscaval.x |
|- ( ph -> X e. B ) |
| 11 |
|
pwsvscaval.j |
|- ( ph -> J e. I ) |
| 12 |
1 2 3 4 5 6 7 8 9 10
|
pwsvscafval |
|- ( ph -> ( A .xb X ) = ( ( I X. { A } ) oF .x. X ) ) |
| 13 |
12
|
fveq1d |
|- ( ph -> ( ( A .xb X ) ` J ) = ( ( ( I X. { A } ) oF .x. X ) ` J ) ) |
| 14 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 15 |
1 14 2 7 8 10
|
pwselbas |
|- ( ph -> X : I --> ( Base ` R ) ) |
| 16 |
15
|
ffnd |
|- ( ph -> X Fn I ) |
| 17 |
|
eqidd |
|- ( ( ph /\ J e. I ) -> ( X ` J ) = ( X ` J ) ) |
| 18 |
8 9 16 17
|
ofc1 |
|- ( ( ph /\ J e. I ) -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( A .x. ( X ` J ) ) ) |
| 19 |
11 18
|
mpdan |
|- ( ph -> ( ( ( I X. { A } ) oF .x. X ) ` J ) = ( A .x. ( X ` J ) ) ) |
| 20 |
13 19
|
eqtrd |
|- ( ph -> ( ( A .xb X ) ` J ) = ( A .x. ( X ` J ) ) ) |