| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pwsvscaval.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐼 ) |
| 2 |
|
pwsvscaval.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
pwsvscaval.s |
⊢ · = ( ·𝑠 ‘ 𝑅 ) |
| 4 |
|
pwsvscaval.t |
⊢ ∙ = ( ·𝑠 ‘ 𝑌 ) |
| 5 |
|
pwsvscaval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑅 ) |
| 6 |
|
pwsvscaval.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 7 |
|
pwsvscaval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
| 8 |
|
pwsvscaval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 9 |
|
pwsvscaval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 10 |
|
pwsvscaval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 11 |
|
pwsvscaval.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) |
| 12 |
1 2 3 4 5 6 7 8 9 10
|
pwsvscafval |
⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) = ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ) |
| 13 |
12
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 15 |
1 14 2 7 8 10
|
pwselbas |
⊢ ( 𝜑 → 𝑋 : 𝐼 ⟶ ( Base ‘ 𝑅 ) ) |
| 16 |
15
|
ffnd |
⊢ ( 𝜑 → 𝑋 Fn 𝐼 ) |
| 17 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐼 ) → ( 𝑋 ‘ 𝐽 ) = ( 𝑋 ‘ 𝐽 ) ) |
| 18 |
8 9 16 17
|
ofc1 |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ 𝐼 ) → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |
| 19 |
11 18
|
mpdan |
⊢ ( 𝜑 → ( ( ( 𝐼 × { 𝐴 } ) ∘f · 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |
| 20 |
13 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝐽 ) = ( 𝐴 · ( 𝑋 ‘ 𝐽 ) ) ) |