| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
| 2 |
1
|
tgqioo |
|- ( topGen ` ran (,) ) = ( topGen ` ( (,) " ( QQ X. QQ ) ) ) |
| 3 |
|
qtopbas |
|- ( (,) " ( QQ X. QQ ) ) e. TopBases |
| 4 |
|
omelon |
|- _om e. On |
| 5 |
|
qnnen |
|- QQ ~~ NN |
| 6 |
|
xpen |
|- ( ( QQ ~~ NN /\ QQ ~~ NN ) -> ( QQ X. QQ ) ~~ ( NN X. NN ) ) |
| 7 |
5 5 6
|
mp2an |
|- ( QQ X. QQ ) ~~ ( NN X. NN ) |
| 8 |
|
xpnnen |
|- ( NN X. NN ) ~~ NN |
| 9 |
7 8
|
entri |
|- ( QQ X. QQ ) ~~ NN |
| 10 |
|
nnenom |
|- NN ~~ _om |
| 11 |
9 10
|
entr2i |
|- _om ~~ ( QQ X. QQ ) |
| 12 |
|
isnumi |
|- ( ( _om e. On /\ _om ~~ ( QQ X. QQ ) ) -> ( QQ X. QQ ) e. dom card ) |
| 13 |
4 11 12
|
mp2an |
|- ( QQ X. QQ ) e. dom card |
| 14 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 15 |
|
ffun |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
| 16 |
14 15
|
ax-mp |
|- Fun (,) |
| 17 |
|
qssre |
|- QQ C_ RR |
| 18 |
|
ressxr |
|- RR C_ RR* |
| 19 |
17 18
|
sstri |
|- QQ C_ RR* |
| 20 |
|
xpss12 |
|- ( ( QQ C_ RR* /\ QQ C_ RR* ) -> ( QQ X. QQ ) C_ ( RR* X. RR* ) ) |
| 21 |
19 19 20
|
mp2an |
|- ( QQ X. QQ ) C_ ( RR* X. RR* ) |
| 22 |
14
|
fdmi |
|- dom (,) = ( RR* X. RR* ) |
| 23 |
21 22
|
sseqtrri |
|- ( QQ X. QQ ) C_ dom (,) |
| 24 |
|
fores |
|- ( ( Fun (,) /\ ( QQ X. QQ ) C_ dom (,) ) -> ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) ) |
| 25 |
16 23 24
|
mp2an |
|- ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) |
| 26 |
|
fodomnum |
|- ( ( QQ X. QQ ) e. dom card -> ( ( (,) |` ( QQ X. QQ ) ) : ( QQ X. QQ ) -onto-> ( (,) " ( QQ X. QQ ) ) -> ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) ) ) |
| 27 |
13 25 26
|
mp2 |
|- ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) |
| 28 |
9 10
|
entri |
|- ( QQ X. QQ ) ~~ _om |
| 29 |
|
domentr |
|- ( ( ( (,) " ( QQ X. QQ ) ) ~<_ ( QQ X. QQ ) /\ ( QQ X. QQ ) ~~ _om ) -> ( (,) " ( QQ X. QQ ) ) ~<_ _om ) |
| 30 |
27 28 29
|
mp2an |
|- ( (,) " ( QQ X. QQ ) ) ~<_ _om |
| 31 |
|
2ndci |
|- ( ( ( (,) " ( QQ X. QQ ) ) e. TopBases /\ ( (,) " ( QQ X. QQ ) ) ~<_ _om ) -> ( topGen ` ( (,) " ( QQ X. QQ ) ) ) e. 2ndc ) |
| 32 |
3 30 31
|
mp2an |
|- ( topGen ` ( (,) " ( QQ X. QQ ) ) ) e. 2ndc |
| 33 |
2 32
|
eqeltri |
|- ( topGen ` ran (,) ) e. 2ndc |