Step |
Hyp |
Ref |
Expression |
1 |
|
reeff1o |
|- ( exp |` RR ) : RR -1-1-onto-> RR+ |
2 |
|
eflt |
|- ( ( x e. RR /\ y e. RR ) -> ( x < y <-> ( exp ` x ) < ( exp ` y ) ) ) |
3 |
|
fvres |
|- ( x e. RR -> ( ( exp |` RR ) ` x ) = ( exp ` x ) ) |
4 |
|
fvres |
|- ( y e. RR -> ( ( exp |` RR ) ` y ) = ( exp ` y ) ) |
5 |
3 4
|
breqan12d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) <-> ( exp ` x ) < ( exp ` y ) ) ) |
6 |
2 5
|
bitr4d |
|- ( ( x e. RR /\ y e. RR ) -> ( x < y <-> ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) ) ) |
7 |
6
|
rgen2 |
|- A. x e. RR A. y e. RR ( x < y <-> ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) ) |
8 |
|
df-isom |
|- ( ( exp |` RR ) Isom < , < ( RR , RR+ ) <-> ( ( exp |` RR ) : RR -1-1-onto-> RR+ /\ A. x e. RR A. y e. RR ( x < y <-> ( ( exp |` RR ) ` x ) < ( ( exp |` RR ) ` y ) ) ) ) |
9 |
1 7 8
|
mpbir2an |
|- ( exp |` RR ) Isom < , < ( RR , RR+ ) |