| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR ) | 
						
							| 2 |  | simpl2 |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR ) | 
						
							| 3 |  | simpl3 |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A < B ) | 
						
							| 4 |  | reeff1o |  |-  ( exp |` RR ) : RR -1-1-onto-> RR+ | 
						
							| 5 |  | f1of |  |-  ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR --> RR+ ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( exp |` RR ) : RR --> RR+ | 
						
							| 7 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 8 |  | fss |  |-  ( ( ( exp |` RR ) : RR --> RR+ /\ RR+ C_ RR ) -> ( exp |` RR ) : RR --> RR ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( exp |` RR ) : RR --> RR | 
						
							| 10 |  | iccssre |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) | 
						
							| 11 | 1 2 10 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ RR ) | 
						
							| 12 |  | fssres2 |  |-  ( ( ( exp |` RR ) : RR --> RR /\ ( A [,] B ) C_ RR ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) | 
						
							| 13 | 9 11 12 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) | 
						
							| 14 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 15 | 11 14 | sstrdi |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A [,] B ) C_ CC ) | 
						
							| 16 |  | efcn |  |-  exp e. ( CC -cn-> CC ) | 
						
							| 17 |  | rescncf |  |-  ( ( A [,] B ) C_ CC -> ( exp e. ( CC -cn-> CC ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) | 
						
							| 18 | 15 16 17 | mpisyl |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) | 
						
							| 19 |  | cncfcdm |  |-  ( ( RR C_ CC /\ ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) ) | 
						
							| 20 | 14 18 19 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) <-> ( exp |` ( A [,] B ) ) : ( A [,] B ) --> RR ) ) | 
						
							| 21 | 13 20 | mpbird |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> RR ) ) | 
						
							| 22 |  | reefiso |  |-  ( exp |` RR ) Isom < , < ( RR , RR+ ) | 
						
							| 23 | 22 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp |` RR ) Isom < , < ( RR , RR+ ) ) | 
						
							| 24 |  | ioossre |  |-  ( A (,) B ) C_ RR | 
						
							| 25 | 24 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( A (,) B ) C_ RR ) | 
						
							| 26 |  | eqidd |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) ) | 
						
							| 27 |  | isores3 |  |-  ( ( ( exp |` RR ) Isom < , < ( RR , RR+ ) /\ ( A (,) B ) C_ RR /\ ( ( exp |` RR ) " ( A (,) B ) ) = ( ( exp |` RR ) " ( A (,) B ) ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) | 
						
							| 28 | 23 25 26 27 | syl3anc |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) | 
						
							| 29 |  | ssid |  |-  RR C_ RR | 
						
							| 30 |  | fss |  |-  ( ( ( exp |` RR ) : RR --> RR /\ RR C_ CC ) -> ( exp |` RR ) : RR --> CC ) | 
						
							| 31 | 9 14 30 | mp2an |  |-  ( exp |` RR ) : RR --> CC | 
						
							| 32 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 33 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 34 | 32 33 | dvres |  |-  ( ( ( RR C_ CC /\ ( exp |` RR ) : RR --> CC ) /\ ( RR C_ RR /\ ( A [,] B ) C_ RR ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) | 
						
							| 35 | 14 31 34 | mpanl12 |  |-  ( ( RR C_ RR /\ ( A [,] B ) C_ RR ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) | 
						
							| 36 | 29 11 35 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) ) | 
						
							| 37 | 11 | resabs1d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` RR ) |` ( A [,] B ) ) = ( exp |` ( A [,] B ) ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( ( exp |` RR ) |` ( A [,] B ) ) ) = ( RR _D ( exp |` ( A [,] B ) ) ) ) | 
						
							| 39 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 40 |  | eff |  |-  exp : CC --> CC | 
						
							| 41 |  | ssid |  |-  CC C_ CC | 
						
							| 42 |  | dvef |  |-  ( CC _D exp ) = exp | 
						
							| 43 | 42 | dmeqi |  |-  dom ( CC _D exp ) = dom exp | 
						
							| 44 | 40 | fdmi |  |-  dom exp = CC | 
						
							| 45 | 43 44 | eqtri |  |-  dom ( CC _D exp ) = CC | 
						
							| 46 | 14 45 | sseqtrri |  |-  RR C_ dom ( CC _D exp ) | 
						
							| 47 |  | dvres3 |  |-  ( ( ( RR e. { RR , CC } /\ exp : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D exp ) ) ) -> ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) ) | 
						
							| 48 | 39 40 41 46 47 | mp4an |  |-  ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) | 
						
							| 49 | 42 | reseq1i |  |-  ( ( CC _D exp ) |` RR ) = ( exp |` RR ) | 
						
							| 50 | 48 49 | eqtri |  |-  ( RR _D ( exp |` RR ) ) = ( exp |` RR ) | 
						
							| 51 | 50 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` RR ) ) = ( exp |` RR ) ) | 
						
							| 52 |  | iccntr |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) | 
						
							| 53 | 1 2 52 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) | 
						
							| 54 | 51 53 | reseq12d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` RR ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) ) | 
						
							| 55 | 36 38 54 | 3eqtr3d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) ) | 
						
							| 56 |  | isoeq1 |  |-  ( ( RR _D ( exp |` ( A [,] B ) ) ) = ( ( exp |` RR ) |` ( A (,) B ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) <-> ( ( exp |` RR ) |` ( A (,) B ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) ) | 
						
							| 58 | 28 57 | mpbird |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( RR _D ( exp |` ( A [,] B ) ) ) Isom < , < ( ( A (,) B ) , ( ( exp |` RR ) " ( A (,) B ) ) ) ) | 
						
							| 59 |  | simpr |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 (,) 1 ) ) | 
						
							| 60 |  | eqid |  |-  ( ( T x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) | 
						
							| 61 | 1 2 3 21 58 59 60 | dvcvx |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) ) | 
						
							| 62 |  | ax-1cn |  |-  1 e. CC | 
						
							| 63 |  | ioossre |  |-  ( 0 (,) 1 ) C_ RR | 
						
							| 64 | 63 59 | sselid |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. RR ) | 
						
							| 65 | 64 | recnd |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. CC ) | 
						
							| 66 |  | nncan |  |-  ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) | 
						
							| 67 | 62 65 66 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - ( 1 - T ) ) = T ) | 
						
							| 68 | 67 | oveq1d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - ( 1 - T ) ) x. A ) = ( T x. A ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) = ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) | 
						
							| 70 |  | ioossicc |  |-  ( 0 (,) 1 ) C_ ( 0 [,] 1 ) | 
						
							| 71 | 70 59 | sselid |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> T e. ( 0 [,] 1 ) ) | 
						
							| 72 |  | iirev |  |-  ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) | 
						
							| 73 | 71 72 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) | 
						
							| 74 |  | lincmb01cmp |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) | 
						
							| 75 | 73 74 | syldan |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) | 
						
							| 76 | 69 75 | eqeltrrd |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. A ) + ( ( 1 - T ) x. B ) ) e. ( A [,] B ) ) | 
						
							| 77 | 76 | fvresd |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) = ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) ) | 
						
							| 78 | 1 | rexrd |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. RR* ) | 
						
							| 79 | 2 | rexrd |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. RR* ) | 
						
							| 80 | 1 2 3 | ltled |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A <_ B ) | 
						
							| 81 |  | lbicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) | 
						
							| 82 | 78 79 80 81 | syl3anc |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> A e. ( A [,] B ) ) | 
						
							| 83 | 82 | fvresd |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` A ) = ( exp ` A ) ) | 
						
							| 84 | 83 | oveq2d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) = ( T x. ( exp ` A ) ) ) | 
						
							| 85 |  | ubicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) | 
						
							| 86 | 78 79 80 85 | syl3anc |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> B e. ( A [,] B ) ) | 
						
							| 87 | 86 | fvresd |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( exp |` ( A [,] B ) ) ` B ) = ( exp ` B ) ) | 
						
							| 88 | 87 | oveq2d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) = ( ( 1 - T ) x. ( exp ` B ) ) ) | 
						
							| 89 | 84 88 | oveq12d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( ( T x. ( ( exp |` ( A [,] B ) ) ` A ) ) + ( ( 1 - T ) x. ( ( exp |` ( A [,] B ) ) ` B ) ) ) = ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) ) | 
						
							| 90 | 61 77 89 | 3brtr3d |  |-  ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 (,) 1 ) ) -> ( exp ` ( ( T x. A ) + ( ( 1 - T ) x. B ) ) ) < ( ( T x. ( exp ` A ) ) + ( ( 1 - T ) x. ( exp ` B ) ) ) ) |