| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝐴  <  𝐵 ) | 
						
							| 4 |  | reeff1o | ⊢ ( exp  ↾  ℝ ) : ℝ –1-1-onto→ ℝ+ | 
						
							| 5 |  | f1of | ⊢ ( ( exp  ↾  ℝ ) : ℝ –1-1-onto→ ℝ+  →  ( exp  ↾  ℝ ) : ℝ ⟶ ℝ+ ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( exp  ↾  ℝ ) : ℝ ⟶ ℝ+ | 
						
							| 7 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 8 |  | fss | ⊢ ( ( ( exp  ↾  ℝ ) : ℝ ⟶ ℝ+  ∧  ℝ+  ⊆  ℝ )  →  ( exp  ↾  ℝ ) : ℝ ⟶ ℝ ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( exp  ↾  ℝ ) : ℝ ⟶ ℝ | 
						
							| 10 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 11 | 1 2 10 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 12 |  | fssres2 | ⊢ ( ( ( exp  ↾  ℝ ) : ℝ ⟶ ℝ  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ℝ )  →  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 13 | 9 11 12 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) | 
						
							| 14 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 15 | 11 14 | sstrdi | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℂ ) | 
						
							| 16 |  | efcn | ⊢ exp  ∈  ( ℂ –cn→ ℂ ) | 
						
							| 17 |  | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 )  ⊆  ℂ  →  ( exp  ∈  ( ℂ –cn→ ℂ )  →  ( exp  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) | 
						
							| 18 | 15 16 17 | mpisyl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( exp  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 19 |  | cncfcdm | ⊢ ( ( ℝ  ⊆  ℂ  ∧  ( exp  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) )  →  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ↔  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) | 
						
							| 20 | 14 18 19 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ )  ↔  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) | 
						
							| 21 | 13 20 | mpbird | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( exp  ↾  ( 𝐴 [,] 𝐵 ) )  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) | 
						
							| 22 |  | reefiso | ⊢ ( exp  ↾  ℝ )  Isom   <  ,   <  ( ℝ ,  ℝ+ ) | 
						
							| 23 | 22 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( exp  ↾  ℝ )  Isom   <  ,   <  ( ℝ ,  ℝ+ ) ) | 
						
							| 24 |  | ioossre | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℝ | 
						
							| 25 | 24 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝐴 (,) 𝐵 )  ⊆  ℝ ) | 
						
							| 26 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) )  =  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 27 |  | isores3 | ⊢ ( ( ( exp  ↾  ℝ )  Isom   <  ,   <  ( ℝ ,  ℝ+ )  ∧  ( 𝐴 (,) 𝐵 )  ⊆  ℝ  ∧  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) )  =  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) ) )  →  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 (,) 𝐵 ) )  Isom   <  ,   <  ( ( 𝐴 (,) 𝐵 ) ,  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) ) ) ) | 
						
							| 28 | 23 25 26 27 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 (,) 𝐵 ) )  Isom   <  ,   <  ( ( 𝐴 (,) 𝐵 ) ,  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) ) ) ) | 
						
							| 29 |  | ssid | ⊢ ℝ  ⊆  ℝ | 
						
							| 30 |  | fss | ⊢ ( ( ( exp  ↾  ℝ ) : ℝ ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  ( exp  ↾  ℝ ) : ℝ ⟶ ℂ ) | 
						
							| 31 | 9 14 30 | mp2an | ⊢ ( exp  ↾  ℝ ) : ℝ ⟶ ℂ | 
						
							| 32 |  | eqid | ⊢ ( TopOpen ‘ ℂfld )  =  ( TopOpen ‘ ℂfld ) | 
						
							| 33 |  | tgioo4 | ⊢ ( topGen ‘ ran  (,) )  =  ( ( TopOpen ‘ ℂfld )  ↾t  ℝ ) | 
						
							| 34 | 32 33 | dvres | ⊢ ( ( ( ℝ  ⊆  ℂ  ∧  ( exp  ↾  ℝ ) : ℝ ⟶ ℂ )  ∧  ( ℝ  ⊆  ℝ  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) )  →  ( ℝ  D  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( ℝ  D  ( exp  ↾  ℝ ) )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 35 | 14 31 34 | mpanl12 | ⊢ ( ( ℝ  ⊆  ℝ  ∧  ( 𝐴 [,] 𝐵 )  ⊆  ℝ )  →  ( ℝ  D  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( ℝ  D  ( exp  ↾  ℝ ) )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 36 | 29 11 35 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ℝ  D  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( ℝ  D  ( exp  ↾  ℝ ) )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 37 | 11 | resabs1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 [,] 𝐵 ) )  =  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ℝ  D  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( ℝ  D  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ) ) | 
						
							| 39 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 40 |  | eff | ⊢ exp : ℂ ⟶ ℂ | 
						
							| 41 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 42 |  | dvef | ⊢ ( ℂ  D  exp )  =  exp | 
						
							| 43 | 42 | dmeqi | ⊢ dom  ( ℂ  D  exp )  =  dom  exp | 
						
							| 44 | 40 | fdmi | ⊢ dom  exp  =  ℂ | 
						
							| 45 | 43 44 | eqtri | ⊢ dom  ( ℂ  D  exp )  =  ℂ | 
						
							| 46 | 14 45 | sseqtrri | ⊢ ℝ  ⊆  dom  ( ℂ  D  exp ) | 
						
							| 47 |  | dvres3 | ⊢ ( ( ( ℝ  ∈  { ℝ ,  ℂ }  ∧  exp : ℂ ⟶ ℂ )  ∧  ( ℂ  ⊆  ℂ  ∧  ℝ  ⊆  dom  ( ℂ  D  exp ) ) )  →  ( ℝ  D  ( exp  ↾  ℝ ) )  =  ( ( ℂ  D  exp )  ↾  ℝ ) ) | 
						
							| 48 | 39 40 41 46 47 | mp4an | ⊢ ( ℝ  D  ( exp  ↾  ℝ ) )  =  ( ( ℂ  D  exp )  ↾  ℝ ) | 
						
							| 49 | 42 | reseq1i | ⊢ ( ( ℂ  D  exp )  ↾  ℝ )  =  ( exp  ↾  ℝ ) | 
						
							| 50 | 48 49 | eqtri | ⊢ ( ℝ  D  ( exp  ↾  ℝ ) )  =  ( exp  ↾  ℝ ) | 
						
							| 51 | 50 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ℝ  D  ( exp  ↾  ℝ ) )  =  ( exp  ↾  ℝ ) ) | 
						
							| 52 |  | iccntr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 53 | 1 2 52 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 54 | 51 53 | reseq12d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( ℝ  D  ( exp  ↾  ℝ ) )  ↾  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) )  =  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 55 | 36 38 54 | 3eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ℝ  D  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 56 |  | isoeq1 | ⊢ ( ( ℝ  D  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) )  =  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) )  Isom   <  ,   <  ( ( 𝐴 (,) 𝐵 ) ,  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) ) )  ↔  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 (,) 𝐵 ) )  Isom   <  ,   <  ( ( 𝐴 (,) 𝐵 ) ,  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) ) ) ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( ℝ  D  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) )  Isom   <  ,   <  ( ( 𝐴 (,) 𝐵 ) ,  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) ) )  ↔  ( ( exp  ↾  ℝ )  ↾  ( 𝐴 (,) 𝐵 ) )  Isom   <  ,   <  ( ( 𝐴 (,) 𝐵 ) ,  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) ) ) ) ) | 
						
							| 58 | 28 57 | mpbird | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ℝ  D  ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) )  Isom   <  ,   <  ( ( 𝐴 (,) 𝐵 ) ,  ( ( exp  ↾  ℝ )  “  ( 𝐴 (,) 𝐵 ) ) ) ) | 
						
							| 59 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝑇  ∈  ( 0 (,) 1 ) ) | 
						
							| 60 |  | eqid | ⊢ ( ( 𝑇  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) )  =  ( ( 𝑇  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) ) | 
						
							| 61 | 1 2 3 21 58 59 60 | dvcvx | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ ( ( 𝑇  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) ) )  <  ( ( 𝑇  ·  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) )  +  ( ( 1  −  𝑇 )  ·  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) ) ) | 
						
							| 62 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 63 |  | ioossre | ⊢ ( 0 (,) 1 )  ⊆  ℝ | 
						
							| 64 | 63 59 | sselid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝑇  ∈  ℝ ) | 
						
							| 65 | 64 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝑇  ∈  ℂ ) | 
						
							| 66 |  | nncan | ⊢ ( ( 1  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 1  −  ( 1  −  𝑇 ) )  =  𝑇 ) | 
						
							| 67 | 62 65 66 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 1  −  ( 1  −  𝑇 ) )  =  𝑇 ) | 
						
							| 68 | 67 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐴 )  =  ( 𝑇  ·  𝐴 ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) )  =  ( ( 𝑇  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) ) ) | 
						
							| 70 |  | ioossicc | ⊢ ( 0 (,) 1 )  ⊆  ( 0 [,] 1 ) | 
						
							| 71 | 70 59 | sselid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝑇  ∈  ( 0 [,] 1 ) ) | 
						
							| 72 |  | iirev | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  ( 1  −  𝑇 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 73 | 71 72 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 1  −  𝑇 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 74 |  | lincmb01cmp | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  ( 1  −  𝑇 )  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 75 | 73 74 | syldan | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 76 | 69 75 | eqeltrrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( 𝑇  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 77 | 76 | fvresd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ ( ( 𝑇  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) ) )  =  ( exp ‘ ( ( 𝑇  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) ) ) ) | 
						
							| 78 | 1 | rexrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 79 | 2 | rexrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 80 | 1 2 3 | ltled | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 81 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 82 | 78 79 80 81 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 83 | 82 | fvresd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 )  =  ( exp ‘ 𝐴 ) ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( 𝑇  ·  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) )  =  ( 𝑇  ·  ( exp ‘ 𝐴 ) ) ) | 
						
							| 85 |  | ubicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 86 | 78 79 80 85 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  𝐵  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 87 | 86 | fvresd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 )  =  ( exp ‘ 𝐵 ) ) | 
						
							| 88 | 87 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( 1  −  𝑇 )  ·  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) )  =  ( ( 1  −  𝑇 )  ·  ( exp ‘ 𝐵 ) ) ) | 
						
							| 89 | 84 88 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( ( 𝑇  ·  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) )  +  ( ( 1  −  𝑇 )  ·  ( ( exp  ↾  ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) )  =  ( ( 𝑇  ·  ( exp ‘ 𝐴 ) )  +  ( ( 1  −  𝑇 )  ·  ( exp ‘ 𝐵 ) ) ) ) | 
						
							| 90 | 61 77 89 | 3brtr3d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  <  𝐵 )  ∧  𝑇  ∈  ( 0 (,) 1 ) )  →  ( exp ‘ ( ( 𝑇  ·  𝐴 )  +  ( ( 1  −  𝑇 )  ·  𝐵 ) ) )  <  ( ( 𝑇  ·  ( exp ‘ 𝐴 ) )  +  ( ( 1  −  𝑇 )  ·  ( exp ‘ 𝐵 ) ) ) ) |