| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrnequiv.y |
|- Y = ( ( CCfld |`s RR ) ^s I ) |
| 2 |
|
rrnequiv.d |
|- D = ( dist ` Y ) |
| 3 |
|
rrnequiv.1 |
|- X = ( RR ^m I ) |
| 4 |
|
fconstmpt |
|- ( I X. { ( CCfld |`s RR ) } ) = ( k e. I |-> ( CCfld |`s RR ) ) |
| 5 |
4
|
oveq2i |
|- ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) = ( ( Scalar ` CCfld ) Xs_ ( k e. I |-> ( CCfld |`s RR ) ) ) |
| 6 |
|
eqid |
|- ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 7 |
|
ax-resscn |
|- RR C_ CC |
| 8 |
|
eqid |
|- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
| 9 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 10 |
8 9
|
ressbas2 |
|- ( RR C_ CC -> RR = ( Base ` ( CCfld |`s RR ) ) ) |
| 11 |
7 10
|
ax-mp |
|- RR = ( Base ` ( CCfld |`s RR ) ) |
| 12 |
|
reex |
|- RR e. _V |
| 13 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
| 14 |
8 13
|
ressds |
|- ( RR e. _V -> ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) ) |
| 15 |
12 14
|
ax-mp |
|- ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) |
| 16 |
15
|
reseq1i |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( dist ` ( CCfld |`s RR ) ) |` ( RR X. RR ) ) |
| 17 |
|
eqid |
|- ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 18 |
|
fvexd |
|- ( I e. Fin -> ( Scalar ` CCfld ) e. _V ) |
| 19 |
|
id |
|- ( I e. Fin -> I e. Fin ) |
| 20 |
|
ovex |
|- ( CCfld |`s RR ) e. _V |
| 21 |
20
|
a1i |
|- ( ( I e. Fin /\ k e. I ) -> ( CCfld |`s RR ) e. _V ) |
| 22 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 23 |
22
|
remet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) |
| 24 |
23
|
a1i |
|- ( ( I e. Fin /\ k e. I ) -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) ) |
| 25 |
5 6 11 16 17 18 19 21 24
|
prdsmet |
|- ( I e. Fin -> ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) e. ( Met ` ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) ) |
| 26 |
|
eqid |
|- ( Scalar ` CCfld ) = ( Scalar ` CCfld ) |
| 27 |
8 26
|
resssca |
|- ( RR e. _V -> ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) ) |
| 28 |
12 27
|
ax-mp |
|- ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) |
| 29 |
1 28
|
pwsval |
|- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 30 |
20 29
|
mpan |
|- ( I e. Fin -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 31 |
30
|
fveq2d |
|- ( I e. Fin -> ( dist ` Y ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 32 |
2 31
|
eqtrid |
|- ( I e. Fin -> D = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 33 |
1 11
|
pwsbas |
|- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> ( RR ^m I ) = ( Base ` Y ) ) |
| 34 |
20 33
|
mpan |
|- ( I e. Fin -> ( RR ^m I ) = ( Base ` Y ) ) |
| 35 |
30
|
fveq2d |
|- ( I e. Fin -> ( Base ` Y ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 36 |
34 35
|
eqtrd |
|- ( I e. Fin -> ( RR ^m I ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 37 |
3 36
|
eqtrid |
|- ( I e. Fin -> X = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 38 |
37
|
fveq2d |
|- ( I e. Fin -> ( Met ` X ) = ( Met ` ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) ) |
| 39 |
25 32 38
|
3eltr4d |
|- ( I e. Fin -> D e. ( Met ` X ) ) |