| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrnequiv.y |
|- Y = ( ( CCfld |`s RR ) ^s I ) |
| 2 |
|
rrnequiv.d |
|- D = ( dist ` Y ) |
| 3 |
|
rrnequiv.1 |
|- X = ( RR ^m I ) |
| 4 |
|
rrnequiv.i |
|- ( ph -> I e. Fin ) |
| 5 |
|
ovex |
|- ( CCfld |`s RR ) e. _V |
| 6 |
4
|
adantr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> I e. Fin ) |
| 7 |
|
reex |
|- RR e. _V |
| 8 |
|
eqid |
|- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
| 9 |
|
eqid |
|- ( Scalar ` CCfld ) = ( Scalar ` CCfld ) |
| 10 |
8 9
|
resssca |
|- ( RR e. _V -> ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) ) |
| 11 |
7 10
|
ax-mp |
|- ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) |
| 12 |
1 11
|
pwsval |
|- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 13 |
5 6 12
|
sylancr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 14 |
13
|
fveq2d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( dist ` Y ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 15 |
2 14
|
eqtrid |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> D = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 16 |
15
|
oveqd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F D G ) = ( F ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) G ) ) |
| 17 |
|
fconstmpt |
|- ( I X. { ( CCfld |`s RR ) } ) = ( k e. I |-> ( CCfld |`s RR ) ) |
| 18 |
17
|
oveq2i |
|- ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) = ( ( Scalar ` CCfld ) Xs_ ( k e. I |-> ( CCfld |`s RR ) ) ) |
| 19 |
|
eqid |
|- ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 20 |
|
fvexd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( Scalar ` CCfld ) e. _V ) |
| 21 |
5
|
a1i |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( CCfld |`s RR ) e. _V ) |
| 22 |
21
|
ralrimiva |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. k e. I ( CCfld |`s RR ) e. _V ) |
| 23 |
|
simprl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> F e. X ) |
| 24 |
|
ax-resscn |
|- RR C_ CC |
| 25 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 26 |
8 25
|
ressbas2 |
|- ( RR C_ CC -> RR = ( Base ` ( CCfld |`s RR ) ) ) |
| 27 |
24 26
|
ax-mp |
|- RR = ( Base ` ( CCfld |`s RR ) ) |
| 28 |
1 27
|
pwsbas |
|- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> ( RR ^m I ) = ( Base ` Y ) ) |
| 29 |
5 6 28
|
sylancr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( RR ^m I ) = ( Base ` Y ) ) |
| 30 |
13
|
fveq2d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 31 |
29 30
|
eqtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( RR ^m I ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 32 |
3 31
|
eqtrid |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> X = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 33 |
23 32
|
eleqtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> F e. ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 34 |
|
simprr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> G e. X ) |
| 35 |
34 32
|
eleqtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> G e. ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
| 36 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
| 37 |
8 36
|
ressds |
|- ( RR e. _V -> ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) ) |
| 38 |
7 37
|
ax-mp |
|- ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) |
| 39 |
38
|
reseq1i |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( dist ` ( CCfld |`s RR ) ) |` ( RR X. RR ) ) |
| 40 |
|
eqid |
|- ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
| 41 |
18 19 20 6 22 33 35 27 39 40
|
prdsdsval3 |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) G ) = sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
| 42 |
16 41
|
eqtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F D G ) = sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
| 43 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 44 |
3 43
|
rrndstprj1 |
|- ( ( ( I e. Fin /\ k e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
| 45 |
44
|
an32s |
|- ( ( ( I e. Fin /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
| 46 |
4 45
|
sylanl1 |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
| 47 |
46
|
ralrimiva |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
| 48 |
|
ovex |
|- ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. _V |
| 49 |
48
|
rgenw |
|- A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. _V |
| 50 |
|
eqid |
|- ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) = ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) |
| 51 |
|
breq1 |
|- ( z = ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) -> ( z <_ ( F ( Rn ` I ) G ) <-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) ) |
| 52 |
50 51
|
ralrnmptw |
|- ( A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. _V -> ( A. z e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) z <_ ( F ( Rn ` I ) G ) <-> A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) ) |
| 53 |
49 52
|
ax-mp |
|- ( A. z e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) z <_ ( F ( Rn ` I ) G ) <-> A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
| 54 |
47 53
|
sylibr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. z e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) z <_ ( F ( Rn ` I ) G ) ) |
| 55 |
3
|
rrnmet |
|- ( I e. Fin -> ( Rn ` I ) e. ( Met ` X ) ) |
| 56 |
6 55
|
syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( Rn ` I ) e. ( Met ` X ) ) |
| 57 |
|
metge0 |
|- ( ( ( Rn ` I ) e. ( Met ` X ) /\ F e. X /\ G e. X ) -> 0 <_ ( F ( Rn ` I ) G ) ) |
| 58 |
56 23 34 57
|
syl3anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( F ( Rn ` I ) G ) ) |
| 59 |
|
elsni |
|- ( z e. { 0 } -> z = 0 ) |
| 60 |
59
|
breq1d |
|- ( z e. { 0 } -> ( z <_ ( F ( Rn ` I ) G ) <-> 0 <_ ( F ( Rn ` I ) G ) ) ) |
| 61 |
58 60
|
syl5ibrcom |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( z e. { 0 } -> z <_ ( F ( Rn ` I ) G ) ) ) |
| 62 |
61
|
ralrimiv |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. z e. { 0 } z <_ ( F ( Rn ` I ) G ) ) |
| 63 |
|
ralunb |
|- ( A. z e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) z <_ ( F ( Rn ` I ) G ) <-> ( A. z e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) z <_ ( F ( Rn ` I ) G ) /\ A. z e. { 0 } z <_ ( F ( Rn ` I ) G ) ) ) |
| 64 |
54 62 63
|
sylanbrc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. z e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) z <_ ( F ( Rn ` I ) G ) ) |
| 65 |
18 19 20 6 22 27 33
|
prdsbascl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. k e. I ( F ` k ) e. RR ) |
| 66 |
65
|
r19.21bi |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( F ` k ) e. RR ) |
| 67 |
18 19 20 6 22 27 35
|
prdsbascl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. k e. I ( G ` k ) e. RR ) |
| 68 |
67
|
r19.21bi |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( G ` k ) e. RR ) |
| 69 |
43
|
remet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) |
| 70 |
|
metcl |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) /\ ( F ` k ) e. RR /\ ( G ` k ) e. RR ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. RR ) |
| 71 |
69 70
|
mp3an1 |
|- ( ( ( F ` k ) e. RR /\ ( G ` k ) e. RR ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. RR ) |
| 72 |
66 68 71
|
syl2anc |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. RR ) |
| 73 |
72
|
fmpttd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) : I --> RR ) |
| 74 |
73
|
frnd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) C_ RR ) |
| 75 |
|
ressxr |
|- RR C_ RR* |
| 76 |
74 75
|
sstrdi |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) C_ RR* ) |
| 77 |
|
0xr |
|- 0 e. RR* |
| 78 |
77
|
a1i |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 e. RR* ) |
| 79 |
78
|
snssd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> { 0 } C_ RR* ) |
| 80 |
76 79
|
unssd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) C_ RR* ) |
| 81 |
|
metcl |
|- ( ( ( Rn ` I ) e. ( Met ` X ) /\ F e. X /\ G e. X ) -> ( F ( Rn ` I ) G ) e. RR ) |
| 82 |
56 23 34 81
|
syl3anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F ( Rn ` I ) G ) e. RR ) |
| 83 |
75 82
|
sselid |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F ( Rn ` I ) G ) e. RR* ) |
| 84 |
|
supxrleub |
|- ( ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) C_ RR* /\ ( F ( Rn ` I ) G ) e. RR* ) -> ( sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) <_ ( F ( Rn ` I ) G ) <-> A. z e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) z <_ ( F ( Rn ` I ) G ) ) ) |
| 85 |
80 83 84
|
syl2anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) <_ ( F ( Rn ` I ) G ) <-> A. z e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) z <_ ( F ( Rn ` I ) G ) ) ) |
| 86 |
64 85
|
mpbird |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) <_ ( F ( Rn ` I ) G ) ) |
| 87 |
42 86
|
eqbrtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F D G ) <_ ( F ( Rn ` I ) G ) ) |
| 88 |
|
rzal |
|- ( I = (/) -> A. k e. I ( F ` k ) = ( G ` k ) ) |
| 89 |
23 3
|
eleqtrdi |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> F e. ( RR ^m I ) ) |
| 90 |
|
elmapi |
|- ( F e. ( RR ^m I ) -> F : I --> RR ) |
| 91 |
|
ffn |
|- ( F : I --> RR -> F Fn I ) |
| 92 |
89 90 91
|
3syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> F Fn I ) |
| 93 |
34 3
|
eleqtrdi |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> G e. ( RR ^m I ) ) |
| 94 |
|
elmapi |
|- ( G e. ( RR ^m I ) -> G : I --> RR ) |
| 95 |
|
ffn |
|- ( G : I --> RR -> G Fn I ) |
| 96 |
93 94 95
|
3syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> G Fn I ) |
| 97 |
|
eqfnfv |
|- ( ( F Fn I /\ G Fn I ) -> ( F = G <-> A. k e. I ( F ` k ) = ( G ` k ) ) ) |
| 98 |
92 96 97
|
syl2anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F = G <-> A. k e. I ( F ` k ) = ( G ` k ) ) ) |
| 99 |
88 98
|
imbitrrid |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( I = (/) -> F = G ) ) |
| 100 |
99
|
imp |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I = (/) ) -> F = G ) |
| 101 |
100
|
oveq1d |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I = (/) ) -> ( F ( Rn ` I ) G ) = ( G ( Rn ` I ) G ) ) |
| 102 |
|
met0 |
|- ( ( ( Rn ` I ) e. ( Met ` X ) /\ G e. X ) -> ( G ( Rn ` I ) G ) = 0 ) |
| 103 |
56 34 102
|
syl2anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( G ( Rn ` I ) G ) = 0 ) |
| 104 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
| 105 |
6 104
|
syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( # ` I ) e. NN0 ) |
| 106 |
105
|
nn0red |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( # ` I ) e. RR ) |
| 107 |
105
|
nn0ge0d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( # ` I ) ) |
| 108 |
106 107
|
resqrtcld |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( sqrt ` ( # ` I ) ) e. RR ) |
| 109 |
1 2 3
|
repwsmet |
|- ( I e. Fin -> D e. ( Met ` X ) ) |
| 110 |
6 109
|
syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> D e. ( Met ` X ) ) |
| 111 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ F e. X /\ G e. X ) -> ( F D G ) e. RR ) |
| 112 |
110 23 34 111
|
syl3anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F D G ) e. RR ) |
| 113 |
106 107
|
sqrtge0d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( sqrt ` ( # ` I ) ) ) |
| 114 |
|
metge0 |
|- ( ( D e. ( Met ` X ) /\ F e. X /\ G e. X ) -> 0 <_ ( F D G ) ) |
| 115 |
110 23 34 114
|
syl3anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( F D G ) ) |
| 116 |
108 112 113 115
|
mulge0d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
| 117 |
103 116
|
eqbrtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( G ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
| 118 |
117
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I = (/) ) -> ( G ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
| 119 |
101 118
|
eqbrtrd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I = (/) ) -> ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
| 120 |
82
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F ( Rn ` I ) G ) e. RR ) |
| 121 |
108 112
|
remulcld |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) e. RR ) |
| 122 |
121
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) e. RR ) |
| 123 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
| 124 |
123
|
ad2antll |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> r e. RR ) |
| 125 |
122 124
|
readdcld |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) e. RR ) |
| 126 |
6
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> I e. Fin ) |
| 127 |
|
simprl |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> I =/= (/) ) |
| 128 |
|
eldifsn |
|- ( I e. ( Fin \ { (/) } ) <-> ( I e. Fin /\ I =/= (/) ) ) |
| 129 |
126 127 128
|
sylanbrc |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> I e. ( Fin \ { (/) } ) ) |
| 130 |
23
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> F e. X ) |
| 131 |
34
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> G e. X ) |
| 132 |
112
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F D G ) e. RR ) |
| 133 |
|
simprr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> r e. RR+ ) |
| 134 |
|
hashnncl |
|- ( I e. Fin -> ( ( # ` I ) e. NN <-> I =/= (/) ) ) |
| 135 |
126 134
|
syl |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( # ` I ) e. NN <-> I =/= (/) ) ) |
| 136 |
127 135
|
mpbird |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( # ` I ) e. NN ) |
| 137 |
136
|
nnrpd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( # ` I ) e. RR+ ) |
| 138 |
137
|
rpsqrtcld |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( sqrt ` ( # ` I ) ) e. RR+ ) |
| 139 |
133 138
|
rpdivcld |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( r / ( sqrt ` ( # ` I ) ) ) e. RR+ ) |
| 140 |
139
|
rpred |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( r / ( sqrt ` ( # ` I ) ) ) e. RR ) |
| 141 |
132 140
|
readdcld |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) e. RR ) |
| 142 |
|
0red |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> 0 e. RR ) |
| 143 |
115
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> 0 <_ ( F D G ) ) |
| 144 |
132 139
|
ltaddrpd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F D G ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
| 145 |
142 132 141 143 144
|
lelttrd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> 0 < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
| 146 |
141 145
|
elrpd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) e. RR+ ) |
| 147 |
72
|
adantlr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. RR ) |
| 148 |
132
|
adantr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( F D G ) e. RR ) |
| 149 |
141
|
adantr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) e. RR ) |
| 150 |
80
|
ad2antrr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) C_ RR* ) |
| 151 |
|
ssun1 |
|- ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) C_ ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) |
| 152 |
|
simpr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> k e. I ) |
| 153 |
50
|
elrnmpt1 |
|- ( ( k e. I /\ ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. _V ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) ) |
| 154 |
152 48 153
|
sylancl |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) ) |
| 155 |
151 154
|
sselid |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) ) |
| 156 |
|
supxrub |
|- ( ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) C_ RR* /\ ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
| 157 |
150 155 156
|
syl2anc |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
| 158 |
42
|
ad2antrr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( F D G ) = sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
| 159 |
157 158
|
breqtrrd |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F D G ) ) |
| 160 |
144
|
adantr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( F D G ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
| 161 |
147 148 149 159 160
|
lelttrd |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
| 162 |
161
|
ralrimiva |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
| 163 |
3 43
|
rrndstprj2 |
|- ( ( ( I e. ( Fin \ { (/) } ) /\ F e. X /\ G e. X ) /\ ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) e. RR+ /\ A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) ) -> ( F ( Rn ` I ) G ) < ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) |
| 164 |
129 130 131 146 162 163
|
syl32anc |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F ( Rn ` I ) G ) < ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) |
| 165 |
132
|
recnd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F D G ) e. CC ) |
| 166 |
140
|
recnd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( r / ( sqrt ` ( # ` I ) ) ) e. CC ) |
| 167 |
108
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( sqrt ` ( # ` I ) ) e. RR ) |
| 168 |
167
|
recnd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( sqrt ` ( # ` I ) ) e. CC ) |
| 169 |
165 166 168
|
adddird |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) x. ( sqrt ` ( # ` I ) ) ) = ( ( ( F D G ) x. ( sqrt ` ( # ` I ) ) ) + ( ( r / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) ) |
| 170 |
165 168
|
mulcomd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( F D G ) x. ( sqrt ` ( # ` I ) ) ) = ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
| 171 |
124
|
recnd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> r e. CC ) |
| 172 |
138
|
rpne0d |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( sqrt ` ( # ` I ) ) =/= 0 ) |
| 173 |
171 168 172
|
divcan1d |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( r / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) = r ) |
| 174 |
170 173
|
oveq12d |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( ( F D G ) x. ( sqrt ` ( # ` I ) ) ) + ( ( r / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) = ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
| 175 |
169 174
|
eqtrd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) x. ( sqrt ` ( # ` I ) ) ) = ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
| 176 |
164 175
|
breqtrd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F ( Rn ` I ) G ) < ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
| 177 |
120 125 176
|
ltled |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
| 178 |
177
|
anassrs |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I =/= (/) ) /\ r e. RR+ ) -> ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
| 179 |
178
|
ralrimiva |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I =/= (/) ) -> A. r e. RR+ ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
| 180 |
|
alrple |
|- ( ( ( F ( Rn ` I ) G ) e. RR /\ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) e. RR ) -> ( ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) <-> A. r e. RR+ ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) ) |
| 181 |
82 121 180
|
syl2anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) <-> A. r e. RR+ ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) ) |
| 182 |
181
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I =/= (/) ) -> ( ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) <-> A. r e. RR+ ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) ) |
| 183 |
179 182
|
mpbird |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I =/= (/) ) -> ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
| 184 |
119 183
|
pm2.61dane |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
| 185 |
87 184
|
jca |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( ( F D G ) <_ ( F ( Rn ` I ) G ) /\ ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) ) |