Step |
Hyp |
Ref |
Expression |
1 |
|
rrnequiv.y |
|- Y = ( ( CCfld |`s RR ) ^s I ) |
2 |
|
rrnequiv.d |
|- D = ( dist ` Y ) |
3 |
|
rrnequiv.1 |
|- X = ( RR ^m I ) |
4 |
|
rrnequiv.i |
|- ( ph -> I e. Fin ) |
5 |
|
ovex |
|- ( CCfld |`s RR ) e. _V |
6 |
4
|
adantr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> I e. Fin ) |
7 |
|
reex |
|- RR e. _V |
8 |
|
eqid |
|- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
9 |
|
eqid |
|- ( Scalar ` CCfld ) = ( Scalar ` CCfld ) |
10 |
8 9
|
resssca |
|- ( RR e. _V -> ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) ) |
11 |
7 10
|
ax-mp |
|- ( Scalar ` CCfld ) = ( Scalar ` ( CCfld |`s RR ) ) |
12 |
1 11
|
pwsval |
|- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
13 |
5 6 12
|
sylancr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> Y = ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
14 |
13
|
fveq2d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( dist ` Y ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
15 |
2 14
|
eqtrid |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> D = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
16 |
15
|
oveqd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F D G ) = ( F ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) G ) ) |
17 |
|
fconstmpt |
|- ( I X. { ( CCfld |`s RR ) } ) = ( k e. I |-> ( CCfld |`s RR ) ) |
18 |
17
|
oveq2i |
|- ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) = ( ( Scalar ` CCfld ) Xs_ ( k e. I |-> ( CCfld |`s RR ) ) ) |
19 |
|
eqid |
|- ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
20 |
|
fvexd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( Scalar ` CCfld ) e. _V ) |
21 |
5
|
a1i |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( CCfld |`s RR ) e. _V ) |
22 |
21
|
ralrimiva |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. k e. I ( CCfld |`s RR ) e. _V ) |
23 |
|
simprl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> F e. X ) |
24 |
|
ax-resscn |
|- RR C_ CC |
25 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
26 |
8 25
|
ressbas2 |
|- ( RR C_ CC -> RR = ( Base ` ( CCfld |`s RR ) ) ) |
27 |
24 26
|
ax-mp |
|- RR = ( Base ` ( CCfld |`s RR ) ) |
28 |
1 27
|
pwsbas |
|- ( ( ( CCfld |`s RR ) e. _V /\ I e. Fin ) -> ( RR ^m I ) = ( Base ` Y ) ) |
29 |
5 6 28
|
sylancr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( RR ^m I ) = ( Base ` Y ) ) |
30 |
13
|
fveq2d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
31 |
29 30
|
eqtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( RR ^m I ) = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
32 |
3 31
|
eqtrid |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> X = ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
33 |
23 32
|
eleqtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> F e. ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
34 |
|
simprr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> G e. X ) |
35 |
34 32
|
eleqtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> G e. ( Base ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) ) |
36 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
37 |
8 36
|
ressds |
|- ( RR e. _V -> ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) ) |
38 |
7 37
|
ax-mp |
|- ( abs o. - ) = ( dist ` ( CCfld |`s RR ) ) |
39 |
38
|
reseq1i |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( dist ` ( CCfld |`s RR ) ) |` ( RR X. RR ) ) |
40 |
|
eqid |
|- ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) = ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) |
41 |
18 19 20 6 22 33 35 27 39 40
|
prdsdsval3 |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F ( dist ` ( ( Scalar ` CCfld ) Xs_ ( I X. { ( CCfld |`s RR ) } ) ) ) G ) = sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
42 |
16 41
|
eqtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F D G ) = sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
43 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
44 |
3 43
|
rrndstprj1 |
|- ( ( ( I e. Fin /\ k e. I ) /\ ( F e. X /\ G e. X ) ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
45 |
44
|
an32s |
|- ( ( ( I e. Fin /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
46 |
4 45
|
sylanl1 |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
47 |
46
|
ralrimiva |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
48 |
|
ovex |
|- ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. _V |
49 |
48
|
rgenw |
|- A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. _V |
50 |
|
eqid |
|- ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) = ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) |
51 |
|
breq1 |
|- ( z = ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) -> ( z <_ ( F ( Rn ` I ) G ) <-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) ) |
52 |
50 51
|
ralrnmptw |
|- ( A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. _V -> ( A. z e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) z <_ ( F ( Rn ` I ) G ) <-> A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) ) |
53 |
49 52
|
ax-mp |
|- ( A. z e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) z <_ ( F ( Rn ` I ) G ) <-> A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F ( Rn ` I ) G ) ) |
54 |
47 53
|
sylibr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. z e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) z <_ ( F ( Rn ` I ) G ) ) |
55 |
3
|
rrnmet |
|- ( I e. Fin -> ( Rn ` I ) e. ( Met ` X ) ) |
56 |
6 55
|
syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( Rn ` I ) e. ( Met ` X ) ) |
57 |
|
metge0 |
|- ( ( ( Rn ` I ) e. ( Met ` X ) /\ F e. X /\ G e. X ) -> 0 <_ ( F ( Rn ` I ) G ) ) |
58 |
56 23 34 57
|
syl3anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( F ( Rn ` I ) G ) ) |
59 |
|
elsni |
|- ( z e. { 0 } -> z = 0 ) |
60 |
59
|
breq1d |
|- ( z e. { 0 } -> ( z <_ ( F ( Rn ` I ) G ) <-> 0 <_ ( F ( Rn ` I ) G ) ) ) |
61 |
58 60
|
syl5ibrcom |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( z e. { 0 } -> z <_ ( F ( Rn ` I ) G ) ) ) |
62 |
61
|
ralrimiv |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. z e. { 0 } z <_ ( F ( Rn ` I ) G ) ) |
63 |
|
ralunb |
|- ( A. z e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) z <_ ( F ( Rn ` I ) G ) <-> ( A. z e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) z <_ ( F ( Rn ` I ) G ) /\ A. z e. { 0 } z <_ ( F ( Rn ` I ) G ) ) ) |
64 |
54 62 63
|
sylanbrc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. z e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) z <_ ( F ( Rn ` I ) G ) ) |
65 |
18 19 20 6 22 27 33
|
prdsbascl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. k e. I ( F ` k ) e. RR ) |
66 |
65
|
r19.21bi |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( F ` k ) e. RR ) |
67 |
18 19 20 6 22 27 35
|
prdsbascl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> A. k e. I ( G ` k ) e. RR ) |
68 |
67
|
r19.21bi |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( G ` k ) e. RR ) |
69 |
43
|
remet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) |
70 |
|
metcl |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( Met ` RR ) /\ ( F ` k ) e. RR /\ ( G ` k ) e. RR ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. RR ) |
71 |
69 70
|
mp3an1 |
|- ( ( ( F ` k ) e. RR /\ ( G ` k ) e. RR ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. RR ) |
72 |
66 68 71
|
syl2anc |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. RR ) |
73 |
72
|
fmpttd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) : I --> RR ) |
74 |
73
|
frnd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) C_ RR ) |
75 |
|
ressxr |
|- RR C_ RR* |
76 |
74 75
|
sstrdi |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) C_ RR* ) |
77 |
|
0xr |
|- 0 e. RR* |
78 |
77
|
a1i |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 e. RR* ) |
79 |
78
|
snssd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> { 0 } C_ RR* ) |
80 |
76 79
|
unssd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) C_ RR* ) |
81 |
|
metcl |
|- ( ( ( Rn ` I ) e. ( Met ` X ) /\ F e. X /\ G e. X ) -> ( F ( Rn ` I ) G ) e. RR ) |
82 |
56 23 34 81
|
syl3anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F ( Rn ` I ) G ) e. RR ) |
83 |
75 82
|
sselid |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F ( Rn ` I ) G ) e. RR* ) |
84 |
|
supxrleub |
|- ( ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) C_ RR* /\ ( F ( Rn ` I ) G ) e. RR* ) -> ( sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) <_ ( F ( Rn ` I ) G ) <-> A. z e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) z <_ ( F ( Rn ` I ) G ) ) ) |
85 |
80 83 84
|
syl2anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) <_ ( F ( Rn ` I ) G ) <-> A. z e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) z <_ ( F ( Rn ` I ) G ) ) ) |
86 |
64 85
|
mpbird |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) <_ ( F ( Rn ` I ) G ) ) |
87 |
42 86
|
eqbrtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F D G ) <_ ( F ( Rn ` I ) G ) ) |
88 |
|
rzal |
|- ( I = (/) -> A. k e. I ( F ` k ) = ( G ` k ) ) |
89 |
23 3
|
eleqtrdi |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> F e. ( RR ^m I ) ) |
90 |
|
elmapi |
|- ( F e. ( RR ^m I ) -> F : I --> RR ) |
91 |
|
ffn |
|- ( F : I --> RR -> F Fn I ) |
92 |
89 90 91
|
3syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> F Fn I ) |
93 |
34 3
|
eleqtrdi |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> G e. ( RR ^m I ) ) |
94 |
|
elmapi |
|- ( G e. ( RR ^m I ) -> G : I --> RR ) |
95 |
|
ffn |
|- ( G : I --> RR -> G Fn I ) |
96 |
93 94 95
|
3syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> G Fn I ) |
97 |
|
eqfnfv |
|- ( ( F Fn I /\ G Fn I ) -> ( F = G <-> A. k e. I ( F ` k ) = ( G ` k ) ) ) |
98 |
92 96 97
|
syl2anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F = G <-> A. k e. I ( F ` k ) = ( G ` k ) ) ) |
99 |
88 98
|
syl5ibr |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( I = (/) -> F = G ) ) |
100 |
99
|
imp |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I = (/) ) -> F = G ) |
101 |
100
|
oveq1d |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I = (/) ) -> ( F ( Rn ` I ) G ) = ( G ( Rn ` I ) G ) ) |
102 |
|
met0 |
|- ( ( ( Rn ` I ) e. ( Met ` X ) /\ G e. X ) -> ( G ( Rn ` I ) G ) = 0 ) |
103 |
56 34 102
|
syl2anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( G ( Rn ` I ) G ) = 0 ) |
104 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
105 |
6 104
|
syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( # ` I ) e. NN0 ) |
106 |
105
|
nn0red |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( # ` I ) e. RR ) |
107 |
105
|
nn0ge0d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( # ` I ) ) |
108 |
106 107
|
resqrtcld |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( sqrt ` ( # ` I ) ) e. RR ) |
109 |
1 2 3
|
repwsmet |
|- ( I e. Fin -> D e. ( Met ` X ) ) |
110 |
6 109
|
syl |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> D e. ( Met ` X ) ) |
111 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ F e. X /\ G e. X ) -> ( F D G ) e. RR ) |
112 |
110 23 34 111
|
syl3anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F D G ) e. RR ) |
113 |
106 107
|
sqrtge0d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( sqrt ` ( # ` I ) ) ) |
114 |
|
metge0 |
|- ( ( D e. ( Met ` X ) /\ F e. X /\ G e. X ) -> 0 <_ ( F D G ) ) |
115 |
110 23 34 114
|
syl3anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( F D G ) ) |
116 |
108 112 113 115
|
mulge0d |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> 0 <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
117 |
103 116
|
eqbrtrd |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( G ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
118 |
117
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I = (/) ) -> ( G ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
119 |
101 118
|
eqbrtrd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I = (/) ) -> ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
120 |
82
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F ( Rn ` I ) G ) e. RR ) |
121 |
108 112
|
remulcld |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) e. RR ) |
122 |
121
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) e. RR ) |
123 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
124 |
123
|
ad2antll |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> r e. RR ) |
125 |
122 124
|
readdcld |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) e. RR ) |
126 |
6
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> I e. Fin ) |
127 |
|
simprl |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> I =/= (/) ) |
128 |
|
eldifsn |
|- ( I e. ( Fin \ { (/) } ) <-> ( I e. Fin /\ I =/= (/) ) ) |
129 |
126 127 128
|
sylanbrc |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> I e. ( Fin \ { (/) } ) ) |
130 |
23
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> F e. X ) |
131 |
34
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> G e. X ) |
132 |
112
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F D G ) e. RR ) |
133 |
|
simprr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> r e. RR+ ) |
134 |
|
hashnncl |
|- ( I e. Fin -> ( ( # ` I ) e. NN <-> I =/= (/) ) ) |
135 |
126 134
|
syl |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( # ` I ) e. NN <-> I =/= (/) ) ) |
136 |
127 135
|
mpbird |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( # ` I ) e. NN ) |
137 |
136
|
nnrpd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( # ` I ) e. RR+ ) |
138 |
137
|
rpsqrtcld |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( sqrt ` ( # ` I ) ) e. RR+ ) |
139 |
133 138
|
rpdivcld |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( r / ( sqrt ` ( # ` I ) ) ) e. RR+ ) |
140 |
139
|
rpred |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( r / ( sqrt ` ( # ` I ) ) ) e. RR ) |
141 |
132 140
|
readdcld |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) e. RR ) |
142 |
|
0red |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> 0 e. RR ) |
143 |
115
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> 0 <_ ( F D G ) ) |
144 |
132 139
|
ltaddrpd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F D G ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
145 |
142 132 141 143 144
|
lelttrd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> 0 < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
146 |
141 145
|
elrpd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) e. RR+ ) |
147 |
72
|
adantlr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. RR ) |
148 |
132
|
adantr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( F D G ) e. RR ) |
149 |
141
|
adantr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) e. RR ) |
150 |
80
|
ad2antrr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) C_ RR* ) |
151 |
|
ssun1 |
|- ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) C_ ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) |
152 |
|
simpr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> k e. I ) |
153 |
50
|
elrnmpt1 |
|- ( ( k e. I /\ ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. _V ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) ) |
154 |
152 48 153
|
sylancl |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) ) |
155 |
151 154
|
sselid |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) ) |
156 |
|
supxrub |
|- ( ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) C_ RR* /\ ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) e. ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
157 |
150 155 156
|
syl2anc |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
158 |
42
|
ad2antrr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( F D G ) = sup ( ( ran ( k e. I |-> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) ) u. { 0 } ) , RR* , < ) ) |
159 |
157 158
|
breqtrrd |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) <_ ( F D G ) ) |
160 |
144
|
adantr |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( F D G ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
161 |
147 148 149 159 160
|
lelttrd |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) /\ k e. I ) -> ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
162 |
161
|
ralrimiva |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) |
163 |
3 43
|
rrndstprj2 |
|- ( ( ( I e. ( Fin \ { (/) } ) /\ F e. X /\ G e. X ) /\ ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) e. RR+ /\ A. k e. I ( ( F ` k ) ( ( abs o. - ) |` ( RR X. RR ) ) ( G ` k ) ) < ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) ) ) -> ( F ( Rn ` I ) G ) < ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) |
164 |
129 130 131 146 162 163
|
syl32anc |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F ( Rn ` I ) G ) < ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) |
165 |
132
|
recnd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F D G ) e. CC ) |
166 |
140
|
recnd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( r / ( sqrt ` ( # ` I ) ) ) e. CC ) |
167 |
108
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( sqrt ` ( # ` I ) ) e. RR ) |
168 |
167
|
recnd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( sqrt ` ( # ` I ) ) e. CC ) |
169 |
165 166 168
|
adddird |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) x. ( sqrt ` ( # ` I ) ) ) = ( ( ( F D G ) x. ( sqrt ` ( # ` I ) ) ) + ( ( r / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) ) |
170 |
165 168
|
mulcomd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( F D G ) x. ( sqrt ` ( # ` I ) ) ) = ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
171 |
124
|
recnd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> r e. CC ) |
172 |
138
|
rpne0d |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( sqrt ` ( # ` I ) ) =/= 0 ) |
173 |
171 168 172
|
divcan1d |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( r / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) = r ) |
174 |
170 173
|
oveq12d |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( ( F D G ) x. ( sqrt ` ( # ` I ) ) ) + ( ( r / ( sqrt ` ( # ` I ) ) ) x. ( sqrt ` ( # ` I ) ) ) ) = ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
175 |
169 174
|
eqtrd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( ( ( F D G ) + ( r / ( sqrt ` ( # ` I ) ) ) ) x. ( sqrt ` ( # ` I ) ) ) = ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
176 |
164 175
|
breqtrd |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F ( Rn ` I ) G ) < ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
177 |
120 125 176
|
ltled |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ ( I =/= (/) /\ r e. RR+ ) ) -> ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
178 |
177
|
anassrs |
|- ( ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I =/= (/) ) /\ r e. RR+ ) -> ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
179 |
178
|
ralrimiva |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I =/= (/) ) -> A. r e. RR+ ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) |
180 |
|
alrple |
|- ( ( ( F ( Rn ` I ) G ) e. RR /\ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) e. RR ) -> ( ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) <-> A. r e. RR+ ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) ) |
181 |
82 121 180
|
syl2anc |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) <-> A. r e. RR+ ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) ) |
182 |
181
|
adantr |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I =/= (/) ) -> ( ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) <-> A. r e. RR+ ( F ( Rn ` I ) G ) <_ ( ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) + r ) ) ) |
183 |
179 182
|
mpbird |
|- ( ( ( ph /\ ( F e. X /\ G e. X ) ) /\ I =/= (/) ) -> ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
184 |
119 183
|
pm2.61dane |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) |
185 |
87 184
|
jca |
|- ( ( ph /\ ( F e. X /\ G e. X ) ) -> ( ( F D G ) <_ ( F ( Rn ` I ) G ) /\ ( F ( Rn ` I ) G ) <_ ( ( sqrt ` ( # ` I ) ) x. ( F D G ) ) ) ) |