Step |
Hyp |
Ref |
Expression |
1 |
|
df-res |
|- ( A |` ( B \ C ) ) = ( A i^i ( ( B \ C ) X. _V ) ) |
2 |
|
difxp1 |
|- ( ( B \ C ) X. _V ) = ( ( B X. _V ) \ ( C X. _V ) ) |
3 |
2
|
ineq2i |
|- ( A i^i ( ( B \ C ) X. _V ) ) = ( A i^i ( ( B X. _V ) \ ( C X. _V ) ) ) |
4 |
|
indifdi |
|- ( A i^i ( ( B X. _V ) \ ( C X. _V ) ) ) = ( ( A i^i ( B X. _V ) ) \ ( A i^i ( C X. _V ) ) ) |
5 |
1 3 4
|
3eqtri |
|- ( A |` ( B \ C ) ) = ( ( A i^i ( B X. _V ) ) \ ( A i^i ( C X. _V ) ) ) |
6 |
|
df-res |
|- ( A |` B ) = ( A i^i ( B X. _V ) ) |
7 |
|
df-res |
|- ( A |` C ) = ( A i^i ( C X. _V ) ) |
8 |
6 7
|
difeq12i |
|- ( ( A |` B ) \ ( A |` C ) ) = ( ( A i^i ( B X. _V ) ) \ ( A i^i ( C X. _V ) ) ) |
9 |
5 8
|
eqtr4i |
|- ( A |` ( B \ C ) ) = ( ( A |` B ) \ ( A |` C ) ) |