Metamath Proof Explorer


Theorem resdifdi

Description: Distributive law for restriction over difference. (Contributed by BTernaryTau, 15-Aug-2024)

Ref Expression
Assertion resdifdi ABC=ABAC

Proof

Step Hyp Ref Expression
1 df-res ABC=ABC×V
2 difxp1 BC×V=B×VC×V
3 2 ineq2i ABC×V=AB×VC×V
4 indifdi AB×VC×V=AB×VAC×V
5 1 3 4 3eqtri ABC=AB×VAC×V
6 df-res AB=AB×V
7 df-res AC=AC×V
8 6 7 difeq12i ABAC=AB×VAC×V
9 5 8 eqtr4i ABC=ABAC