Metamath Proof Explorer


Theorem rgen2a

Description: Generalization rule for restricted quantification. Note that x and y are not required to be disjoint. This proof illustrates the use of dvelim . This theorem relies on the full set of axioms up to ax-ext and it should no longer be used. Usage of rgen2 is highly encouraged. (Contributed by NM, 23-Nov-1994) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 1-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis rgen2a.1
|- ( ( x e. A /\ y e. A ) -> ph )
Assertion rgen2a
|- A. x e. A A. y e. A ph

Proof

Step Hyp Ref Expression
1 rgen2a.1
 |-  ( ( x e. A /\ y e. A ) -> ph )
2 eleq1
 |-  ( z = x -> ( z e. A <-> x e. A ) )
3 2 dvelimv
 |-  ( -. A. y y = x -> ( x e. A -> A. y x e. A ) )
4 1 ex
 |-  ( x e. A -> ( y e. A -> ph ) )
5 4 alimi
 |-  ( A. y x e. A -> A. y ( y e. A -> ph ) )
6 3 5 syl6com
 |-  ( x e. A -> ( -. A. y y = x -> A. y ( y e. A -> ph ) ) )
7 eleq1
 |-  ( y = x -> ( y e. A <-> x e. A ) )
8 7 biimpd
 |-  ( y = x -> ( y e. A -> x e. A ) )
9 8 4 syli
 |-  ( y = x -> ( y e. A -> ph ) )
10 9 alimi
 |-  ( A. y y = x -> A. y ( y e. A -> ph ) )
11 6 10 pm2.61d2
 |-  ( x e. A -> A. y ( y e. A -> ph ) )
12 df-ral
 |-  ( A. y e. A ph <-> A. y ( y e. A -> ph ) )
13 11 12 sylibr
 |-  ( x e. A -> A. y e. A ph )
14 13 rgen
 |-  A. x e. A A. y e. A ph