Description: Generalization rule for restricted quantification. Note that x and y are not required to be disjoint. This proof illustrates the use of dvelim . This theorem relies on the full set of axioms up to ax-ext and it should no longer be used. Usage of rgen2 is highly encouraged. (Contributed by NM, 23-Nov-1994) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 1-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rgen2a.1 | |- ( ( x e. A /\ y e. A ) -> ph ) |
|
Assertion | rgen2a | |- A. x e. A A. y e. A ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2a.1 | |- ( ( x e. A /\ y e. A ) -> ph ) |
|
2 | eleq1 | |- ( z = x -> ( z e. A <-> x e. A ) ) |
|
3 | 2 | dvelimv | |- ( -. A. y y = x -> ( x e. A -> A. y x e. A ) ) |
4 | 1 | ex | |- ( x e. A -> ( y e. A -> ph ) ) |
5 | 4 | alimi | |- ( A. y x e. A -> A. y ( y e. A -> ph ) ) |
6 | 3 5 | syl6com | |- ( x e. A -> ( -. A. y y = x -> A. y ( y e. A -> ph ) ) ) |
7 | eleq1 | |- ( y = x -> ( y e. A <-> x e. A ) ) |
|
8 | 7 | biimpd | |- ( y = x -> ( y e. A -> x e. A ) ) |
9 | 8 4 | syli | |- ( y = x -> ( y e. A -> ph ) ) |
10 | 9 | alimi | |- ( A. y y = x -> A. y ( y e. A -> ph ) ) |
11 | 6 10 | pm2.61d2 | |- ( x e. A -> A. y ( y e. A -> ph ) ) |
12 | df-ral | |- ( A. y e. A ph <-> A. y ( y e. A -> ph ) ) |
|
13 | 11 12 | sylibr | |- ( x e. A -> A. y e. A ph ) |
14 | 13 | rgen | |- A. x e. A A. y e. A ph |