| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringunitnzdiv.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | ringunitnzdiv.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | ringunitnzdiv.t |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | ringunitnzdiv.r |  |-  ( ph -> R e. Ring ) | 
						
							| 5 |  | ringunitnzdiv.y |  |-  ( ph -> Y e. B ) | 
						
							| 6 |  | ringunitnzdiv.x |  |-  ( ph -> X e. ( Unit ` R ) ) | 
						
							| 7 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 8 |  | eqid |  |-  ( Unit ` R ) = ( Unit ` R ) | 
						
							| 9 | 1 8 | unitcl |  |-  ( X e. ( Unit ` R ) -> X e. B ) | 
						
							| 10 | 6 9 | syl |  |-  ( ph -> X e. B ) | 
						
							| 11 |  | eqid |  |-  ( invr ` R ) = ( invr ` R ) | 
						
							| 12 | 8 11 1 | ringinvcl |  |-  ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( ( invr ` R ) ` X ) e. B ) | 
						
							| 13 | 4 6 12 | syl2anc |  |-  ( ph -> ( ( invr ` R ) ` X ) e. B ) | 
						
							| 14 |  | oveq1 |  |-  ( e = ( ( invr ` R ) ` X ) -> ( e .x. X ) = ( ( ( invr ` R ) ` X ) .x. X ) ) | 
						
							| 15 | 14 | eqeq1d |  |-  ( e = ( ( invr ` R ) ` X ) -> ( ( e .x. X ) = ( 1r ` R ) <-> ( ( ( invr ` R ) ` X ) .x. X ) = ( 1r ` R ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ e = ( ( invr ` R ) ` X ) ) -> ( ( e .x. X ) = ( 1r ` R ) <-> ( ( ( invr ` R ) ` X ) .x. X ) = ( 1r ` R ) ) ) | 
						
							| 17 | 8 11 3 7 | unitlinv |  |-  ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( ( ( invr ` R ) ` X ) .x. X ) = ( 1r ` R ) ) | 
						
							| 18 | 4 6 17 | syl2anc |  |-  ( ph -> ( ( ( invr ` R ) ` X ) .x. X ) = ( 1r ` R ) ) | 
						
							| 19 | 13 16 18 | rspcedvd |  |-  ( ph -> E. e e. B ( e .x. X ) = ( 1r ` R ) ) | 
						
							| 20 | 1 3 7 2 4 10 19 5 | ringinvnzdiv |  |-  ( ph -> ( ( X .x. Y ) = .0. <-> Y = .0. ) ) |