| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. CMetSp ) | 
						
							| 2 |  | cmsms |  |-  ( R e. CMetSp -> R e. MetSp ) | 
						
							| 3 |  | mstps |  |-  ( R e. MetSp -> R e. TopSp ) | 
						
							| 4 | 1 2 3 | 3syl |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. TopSp ) | 
						
							| 5 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 6 |  | eqid |  |-  ( TopOpen ` R ) = ( TopOpen ` R ) | 
						
							| 7 | 5 6 | tpsuni |  |-  ( R e. TopSp -> ( Base ` R ) = U. ( TopOpen ` R ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( Base ` R ) = U. ( TopOpen ` R ) ) | 
						
							| 9 | 6 | tpstop |  |-  ( R e. TopSp -> ( TopOpen ` R ) e. Top ) | 
						
							| 10 |  | eqid |  |-  U. ( TopOpen ` R ) = U. ( TopOpen ` R ) | 
						
							| 11 | 10 | topcld |  |-  ( ( TopOpen ` R ) e. Top -> U. ( TopOpen ` R ) e. ( Clsd ` ( TopOpen ` R ) ) ) | 
						
							| 12 | 4 9 11 | 3syl |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> U. ( TopOpen ` R ) e. ( Clsd ` ( TopOpen ` R ) ) ) | 
						
							| 13 | 8 12 | eqeltrd |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( Base ` R ) e. ( Clsd ` ( TopOpen ` R ) ) ) | 
						
							| 14 | 5 | ressid |  |-  ( R e. NrmRing -> ( R |`s ( Base ` R ) ) = R ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( R |`s ( Base ` R ) ) = R ) | 
						
							| 16 |  | simp2 |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. DivRing ) | 
						
							| 17 | 15 16 | eqeltrd |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( R |`s ( Base ` R ) ) e. DivRing ) | 
						
							| 18 |  | simp1 |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. NrmRing ) | 
						
							| 19 |  | nrgring |  |-  ( R e. NrmRing -> R e. Ring ) | 
						
							| 20 | 19 | 3ad2ant1 |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. Ring ) | 
						
							| 21 | 5 | subrgid |  |-  ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( Base ` R ) e. ( SubRing ` R ) ) | 
						
							| 23 |  | rlmval |  |-  ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) | 
						
							| 24 | 23 6 | srabn |  |-  ( ( R e. NrmRing /\ R e. CMetSp /\ ( Base ` R ) e. ( SubRing ` R ) ) -> ( ( ringLMod ` R ) e. Ban <-> ( ( Base ` R ) e. ( Clsd ` ( TopOpen ` R ) ) /\ ( R |`s ( Base ` R ) ) e. DivRing ) ) ) | 
						
							| 25 | 18 1 22 24 | syl3anc |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( ( ringLMod ` R ) e. Ban <-> ( ( Base ` R ) e. ( Clsd ` ( TopOpen ` R ) ) /\ ( R |`s ( Base ` R ) ) e. DivRing ) ) ) | 
						
							| 26 | 13 17 25 | mpbir2and |  |-  ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( ringLMod ` R ) e. Ban ) |