Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rlmbn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 | |
|
2 | cmsms | |
|
3 | mstps | |
|
4 | 1 2 3 | 3syl | |
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 | tpsuni | |
8 | 4 7 | syl | |
9 | 6 | tpstop | |
10 | eqid | |
|
11 | 10 | topcld | |
12 | 4 9 11 | 3syl | |
13 | 8 12 | eqeltrd | |
14 | 5 | ressid | |
15 | 14 | 3ad2ant1 | |
16 | simp2 | |
|
17 | 15 16 | eqeltrd | |
18 | simp1 | |
|
19 | nrgring | |
|
20 | 19 | 3ad2ant1 | |
21 | 5 | subrgid | |
22 | 20 21 | syl | |
23 | rlmval | |
|
24 | 23 6 | srabn | |
25 | 18 1 22 24 | syl3anc | |
26 | 13 17 25 | mpbir2and | |