Metamath Proof Explorer


Theorem rlmbn

Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion rlmbn RNrmRingRDivRingRCMetSpringLModRBan

Proof

Step Hyp Ref Expression
1 simp3 RNrmRingRDivRingRCMetSpRCMetSp
2 cmsms RCMetSpRMetSp
3 mstps RMetSpRTopSp
4 1 2 3 3syl RNrmRingRDivRingRCMetSpRTopSp
5 eqid BaseR=BaseR
6 eqid TopOpenR=TopOpenR
7 5 6 tpsuni RTopSpBaseR=TopOpenR
8 4 7 syl RNrmRingRDivRingRCMetSpBaseR=TopOpenR
9 6 tpstop RTopSpTopOpenRTop
10 eqid TopOpenR=TopOpenR
11 10 topcld TopOpenRTopTopOpenRClsdTopOpenR
12 4 9 11 3syl RNrmRingRDivRingRCMetSpTopOpenRClsdTopOpenR
13 8 12 eqeltrd RNrmRingRDivRingRCMetSpBaseRClsdTopOpenR
14 5 ressid RNrmRingR𝑠BaseR=R
15 14 3ad2ant1 RNrmRingRDivRingRCMetSpR𝑠BaseR=R
16 simp2 RNrmRingRDivRingRCMetSpRDivRing
17 15 16 eqeltrd RNrmRingRDivRingRCMetSpR𝑠BaseRDivRing
18 simp1 RNrmRingRDivRingRCMetSpRNrmRing
19 nrgring RNrmRingRRing
20 19 3ad2ant1 RNrmRingRDivRingRCMetSpRRing
21 5 subrgid RRingBaseRSubRingR
22 20 21 syl RNrmRingRDivRingRCMetSpBaseRSubRingR
23 rlmval ringLModR=subringAlgRBaseR
24 23 6 srabn RNrmRingRCMetSpBaseRSubRingRringLModRBanBaseRClsdTopOpenRR𝑠BaseRDivRing
25 18 1 22 24 syl3anc RNrmRingRDivRingRCMetSpringLModRBanBaseRClsdTopOpenRR𝑠BaseRDivRing
26 13 17 25 mpbir2and RNrmRingRDivRingRCMetSpringLModRBan