| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringi.1 |
|- G = ( 1st ` R ) |
| 2 |
|
ringi.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
ringi.3 |
|- X = ran G |
| 4 |
1 2 3
|
rngoid |
|- ( ( R e. RingOps /\ A e. X ) -> E. x e. X ( ( x H A ) = A /\ ( A H x ) = A ) ) |
| 5 |
|
oveq12 |
|- ( ( ( x H A ) = A /\ ( x H A ) = A ) -> ( ( x H A ) G ( x H A ) ) = ( A G A ) ) |
| 6 |
5
|
anidms |
|- ( ( x H A ) = A -> ( ( x H A ) G ( x H A ) ) = ( A G A ) ) |
| 7 |
6
|
eqcomd |
|- ( ( x H A ) = A -> ( A G A ) = ( ( x H A ) G ( x H A ) ) ) |
| 8 |
|
simpll |
|- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> R e. RingOps ) |
| 9 |
|
simpr |
|- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> x e. X ) |
| 10 |
|
simplr |
|- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> A e. X ) |
| 11 |
1 2 3
|
rngodir |
|- ( ( R e. RingOps /\ ( x e. X /\ x e. X /\ A e. X ) ) -> ( ( x G x ) H A ) = ( ( x H A ) G ( x H A ) ) ) |
| 12 |
8 9 9 10 11
|
syl13anc |
|- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( x G x ) H A ) = ( ( x H A ) G ( x H A ) ) ) |
| 13 |
12
|
eqeq2d |
|- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( A G A ) = ( ( x G x ) H A ) <-> ( A G A ) = ( ( x H A ) G ( x H A ) ) ) ) |
| 14 |
7 13
|
imbitrrid |
|- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( x H A ) = A -> ( A G A ) = ( ( x G x ) H A ) ) ) |
| 15 |
14
|
adantrd |
|- ( ( ( R e. RingOps /\ A e. X ) /\ x e. X ) -> ( ( ( x H A ) = A /\ ( A H x ) = A ) -> ( A G A ) = ( ( x G x ) H A ) ) ) |
| 16 |
15
|
reximdva |
|- ( ( R e. RingOps /\ A e. X ) -> ( E. x e. X ( ( x H A ) = A /\ ( A H x ) = A ) -> E. x e. X ( A G A ) = ( ( x G x ) H A ) ) ) |
| 17 |
4 16
|
mpd |
|- ( ( R e. RingOps /\ A e. X ) -> E. x e. X ( A G A ) = ( ( x G x ) H A ) ) |