Step |
Hyp |
Ref |
Expression |
1 |
|
rnsnf.1 |
|- ( ph -> A e. V ) |
2 |
|
rnsnf.2 |
|- ( ph -> F : { A } --> B ) |
3 |
|
elsni |
|- ( x e. { A } -> x = A ) |
4 |
3
|
fveq2d |
|- ( x e. { A } -> ( F ` x ) = ( F ` A ) ) |
5 |
4
|
mpteq2ia |
|- ( x e. { A } |-> ( F ` x ) ) = ( x e. { A } |-> ( F ` A ) ) |
6 |
2
|
feqmptd |
|- ( ph -> F = ( x e. { A } |-> ( F ` x ) ) ) |
7 |
|
fvexd |
|- ( ph -> ( F ` A ) e. _V ) |
8 |
|
fmptsn |
|- ( ( A e. V /\ ( F ` A ) e. _V ) -> { <. A , ( F ` A ) >. } = ( x e. { A } |-> ( F ` A ) ) ) |
9 |
1 7 8
|
syl2anc |
|- ( ph -> { <. A , ( F ` A ) >. } = ( x e. { A } |-> ( F ` A ) ) ) |
10 |
5 6 9
|
3eqtr4a |
|- ( ph -> F = { <. A , ( F ` A ) >. } ) |
11 |
10
|
rneqd |
|- ( ph -> ran F = ran { <. A , ( F ` A ) >. } ) |
12 |
|
rnsnopg |
|- ( A e. V -> ran { <. A , ( F ` A ) >. } = { ( F ` A ) } ) |
13 |
1 12
|
syl |
|- ( ph -> ran { <. A , ( F ` A ) >. } = { ( F ` A ) } ) |
14 |
11 13
|
eqtrd |
|- ( ph -> ran F = { ( F ` A ) } ) |