| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wessf1ornlem.f |
|- ( ph -> F Fn A ) |
| 2 |
|
wessf1ornlem.a |
|- ( ph -> A e. V ) |
| 3 |
|
wessf1ornlem.r |
|- ( ph -> R We A ) |
| 4 |
|
wessf1ornlem.g |
|- G = ( y e. ran F |-> ( iota_ x e. ( `' F " { y } ) A. z e. ( `' F " { y } ) -. z R x ) ) |
| 5 |
|
cnvimass |
|- ( `' F " { u } ) C_ dom F |
| 6 |
1
|
fndmd |
|- ( ph -> dom F = A ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ u e. ran F ) -> dom F = A ) |
| 8 |
5 7
|
sseqtrid |
|- ( ( ph /\ u e. ran F ) -> ( `' F " { u } ) C_ A ) |
| 9 |
3
|
adantr |
|- ( ( ph /\ u e. ran F ) -> R We A ) |
| 10 |
5 6
|
sseqtrid |
|- ( ph -> ( `' F " { u } ) C_ A ) |
| 11 |
2 10
|
ssexd |
|- ( ph -> ( `' F " { u } ) e. _V ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ u e. ran F ) -> ( `' F " { u } ) e. _V ) |
| 13 |
|
inisegn0 |
|- ( u e. ran F <-> ( `' F " { u } ) =/= (/) ) |
| 14 |
13
|
biimpi |
|- ( u e. ran F -> ( `' F " { u } ) =/= (/) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ u e. ran F ) -> ( `' F " { u } ) =/= (/) ) |
| 16 |
|
wereu |
|- ( ( R We A /\ ( ( `' F " { u } ) e. _V /\ ( `' F " { u } ) C_ A /\ ( `' F " { u } ) =/= (/) ) ) -> E! v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) |
| 17 |
9 12 8 15 16
|
syl13anc |
|- ( ( ph /\ u e. ran F ) -> E! v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) |
| 18 |
|
riotacl |
|- ( E! v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v -> ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) e. ( `' F " { u } ) ) |
| 19 |
17 18
|
syl |
|- ( ( ph /\ u e. ran F ) -> ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) e. ( `' F " { u } ) ) |
| 20 |
8 19
|
sseldd |
|- ( ( ph /\ u e. ran F ) -> ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) e. A ) |
| 21 |
20
|
ralrimiva |
|- ( ph -> A. u e. ran F ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) e. A ) |
| 22 |
|
sneq |
|- ( y = u -> { y } = { u } ) |
| 23 |
22
|
imaeq2d |
|- ( y = u -> ( `' F " { y } ) = ( `' F " { u } ) ) |
| 24 |
23
|
raleqdv |
|- ( y = u -> ( A. z e. ( `' F " { y } ) -. z R x <-> A. z e. ( `' F " { u } ) -. z R x ) ) |
| 25 |
23 24
|
riotaeqbidv |
|- ( y = u -> ( iota_ x e. ( `' F " { y } ) A. z e. ( `' F " { y } ) -. z R x ) = ( iota_ x e. ( `' F " { u } ) A. z e. ( `' F " { u } ) -. z R x ) ) |
| 26 |
|
breq1 |
|- ( z = t -> ( z R x <-> t R x ) ) |
| 27 |
26
|
notbid |
|- ( z = t -> ( -. z R x <-> -. t R x ) ) |
| 28 |
27
|
cbvralvw |
|- ( A. z e. ( `' F " { u } ) -. z R x <-> A. t e. ( `' F " { u } ) -. t R x ) |
| 29 |
|
breq2 |
|- ( x = v -> ( t R x <-> t R v ) ) |
| 30 |
29
|
notbid |
|- ( x = v -> ( -. t R x <-> -. t R v ) ) |
| 31 |
30
|
ralbidv |
|- ( x = v -> ( A. t e. ( `' F " { u } ) -. t R x <-> A. t e. ( `' F " { u } ) -. t R v ) ) |
| 32 |
28 31
|
bitrid |
|- ( x = v -> ( A. z e. ( `' F " { u } ) -. z R x <-> A. t e. ( `' F " { u } ) -. t R v ) ) |
| 33 |
32
|
cbvriotavw |
|- ( iota_ x e. ( `' F " { u } ) A. z e. ( `' F " { u } ) -. z R x ) = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) |
| 34 |
25 33
|
eqtrdi |
|- ( y = u -> ( iota_ x e. ( `' F " { y } ) A. z e. ( `' F " { y } ) -. z R x ) = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 35 |
34
|
cbvmptv |
|- ( y e. ran F |-> ( iota_ x e. ( `' F " { y } ) A. z e. ( `' F " { y } ) -. z R x ) ) = ( u e. ran F |-> ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 36 |
4 35
|
eqtri |
|- G = ( u e. ran F |-> ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 37 |
36
|
rnmptss |
|- ( A. u e. ran F ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) e. A -> ran G C_ A ) |
| 38 |
21 37
|
syl |
|- ( ph -> ran G C_ A ) |
| 39 |
2 38
|
sselpwd |
|- ( ph -> ran G e. ~P A ) |
| 40 |
|
dffn3 |
|- ( F Fn A <-> F : A --> ran F ) |
| 41 |
1 40
|
sylib |
|- ( ph -> F : A --> ran F ) |
| 42 |
41 38
|
fssresd |
|- ( ph -> ( F |` ran G ) : ran G --> ran F ) |
| 43 |
|
fvres |
|- ( w e. ran G -> ( ( F |` ran G ) ` w ) = ( F ` w ) ) |
| 44 |
43
|
eqcomd |
|- ( w e. ran G -> ( F ` w ) = ( ( F |` ran G ) ` w ) ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( w e. ran G /\ t e. ran G ) /\ ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) ) -> ( F ` w ) = ( ( F |` ran G ) ` w ) ) |
| 46 |
|
simpr |
|- ( ( ( w e. ran G /\ t e. ran G ) /\ ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) ) -> ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) ) |
| 47 |
|
fvres |
|- ( t e. ran G -> ( ( F |` ran G ) ` t ) = ( F ` t ) ) |
| 48 |
47
|
ad2antlr |
|- ( ( ( w e. ran G /\ t e. ran G ) /\ ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) ) -> ( ( F |` ran G ) ` t ) = ( F ` t ) ) |
| 49 |
45 46 48
|
3eqtrd |
|- ( ( ( w e. ran G /\ t e. ran G ) /\ ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) ) -> ( F ` w ) = ( F ` t ) ) |
| 50 |
49
|
3adantl1 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) ) -> ( F ` w ) = ( F ` t ) ) |
| 51 |
|
simpl1 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> ph ) |
| 52 |
|
simpl3 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> t e. ran G ) |
| 53 |
|
simpl2 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> w e. ran G ) |
| 54 |
|
id |
|- ( ( F ` w ) = ( F ` t ) -> ( F ` w ) = ( F ` t ) ) |
| 55 |
54
|
eqcomd |
|- ( ( F ` w ) = ( F ` t ) -> ( F ` t ) = ( F ` w ) ) |
| 56 |
55
|
adantl |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> ( F ` t ) = ( F ` w ) ) |
| 57 |
|
eleq1w |
|- ( b = w -> ( b e. ran G <-> w e. ran G ) ) |
| 58 |
57
|
3anbi3d |
|- ( b = w -> ( ( ph /\ t e. ran G /\ b e. ran G ) <-> ( ph /\ t e. ran G /\ w e. ran G ) ) ) |
| 59 |
|
fveq2 |
|- ( b = w -> ( F ` b ) = ( F ` w ) ) |
| 60 |
59
|
eqeq2d |
|- ( b = w -> ( ( F ` t ) = ( F ` b ) <-> ( F ` t ) = ( F ` w ) ) ) |
| 61 |
58 60
|
anbi12d |
|- ( b = w -> ( ( ( ph /\ t e. ran G /\ b e. ran G ) /\ ( F ` t ) = ( F ` b ) ) <-> ( ( ph /\ t e. ran G /\ w e. ran G ) /\ ( F ` t ) = ( F ` w ) ) ) ) |
| 62 |
|
breq1 |
|- ( b = w -> ( b R t <-> w R t ) ) |
| 63 |
62
|
notbid |
|- ( b = w -> ( -. b R t <-> -. w R t ) ) |
| 64 |
61 63
|
imbi12d |
|- ( b = w -> ( ( ( ( ph /\ t e. ran G /\ b e. ran G ) /\ ( F ` t ) = ( F ` b ) ) -> -. b R t ) <-> ( ( ( ph /\ t e. ran G /\ w e. ran G ) /\ ( F ` t ) = ( F ` w ) ) -> -. w R t ) ) ) |
| 65 |
|
eleq1w |
|- ( a = t -> ( a e. ran G <-> t e. ran G ) ) |
| 66 |
65
|
3anbi2d |
|- ( a = t -> ( ( ph /\ a e. ran G /\ b e. ran G ) <-> ( ph /\ t e. ran G /\ b e. ran G ) ) ) |
| 67 |
|
fveqeq2 |
|- ( a = t -> ( ( F ` a ) = ( F ` b ) <-> ( F ` t ) = ( F ` b ) ) ) |
| 68 |
66 67
|
anbi12d |
|- ( a = t -> ( ( ( ph /\ a e. ran G /\ b e. ran G ) /\ ( F ` a ) = ( F ` b ) ) <-> ( ( ph /\ t e. ran G /\ b e. ran G ) /\ ( F ` t ) = ( F ` b ) ) ) ) |
| 69 |
|
breq2 |
|- ( a = t -> ( b R a <-> b R t ) ) |
| 70 |
69
|
notbid |
|- ( a = t -> ( -. b R a <-> -. b R t ) ) |
| 71 |
68 70
|
imbi12d |
|- ( a = t -> ( ( ( ( ph /\ a e. ran G /\ b e. ran G ) /\ ( F ` a ) = ( F ` b ) ) -> -. b R a ) <-> ( ( ( ph /\ t e. ran G /\ b e. ran G ) /\ ( F ` t ) = ( F ` b ) ) -> -. b R t ) ) ) |
| 72 |
|
eleq1w |
|- ( t = b -> ( t e. ran G <-> b e. ran G ) ) |
| 73 |
72
|
3anbi3d |
|- ( t = b -> ( ( ph /\ a e. ran G /\ t e. ran G ) <-> ( ph /\ a e. ran G /\ b e. ran G ) ) ) |
| 74 |
|
fveq2 |
|- ( t = b -> ( F ` t ) = ( F ` b ) ) |
| 75 |
74
|
eqeq2d |
|- ( t = b -> ( ( F ` a ) = ( F ` t ) <-> ( F ` a ) = ( F ` b ) ) ) |
| 76 |
73 75
|
anbi12d |
|- ( t = b -> ( ( ( ph /\ a e. ran G /\ t e. ran G ) /\ ( F ` a ) = ( F ` t ) ) <-> ( ( ph /\ a e. ran G /\ b e. ran G ) /\ ( F ` a ) = ( F ` b ) ) ) ) |
| 77 |
|
breq1 |
|- ( t = b -> ( t R a <-> b R a ) ) |
| 78 |
77
|
notbid |
|- ( t = b -> ( -. t R a <-> -. b R a ) ) |
| 79 |
76 78
|
imbi12d |
|- ( t = b -> ( ( ( ( ph /\ a e. ran G /\ t e. ran G ) /\ ( F ` a ) = ( F ` t ) ) -> -. t R a ) <-> ( ( ( ph /\ a e. ran G /\ b e. ran G ) /\ ( F ` a ) = ( F ` b ) ) -> -. b R a ) ) ) |
| 80 |
|
eleq1w |
|- ( w = a -> ( w e. ran G <-> a e. ran G ) ) |
| 81 |
80
|
3anbi2d |
|- ( w = a -> ( ( ph /\ w e. ran G /\ t e. ran G ) <-> ( ph /\ a e. ran G /\ t e. ran G ) ) ) |
| 82 |
|
fveqeq2 |
|- ( w = a -> ( ( F ` w ) = ( F ` t ) <-> ( F ` a ) = ( F ` t ) ) ) |
| 83 |
81 82
|
anbi12d |
|- ( w = a -> ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) <-> ( ( ph /\ a e. ran G /\ t e. ran G ) /\ ( F ` a ) = ( F ` t ) ) ) ) |
| 84 |
|
breq2 |
|- ( w = a -> ( t R w <-> t R a ) ) |
| 85 |
84
|
notbid |
|- ( w = a -> ( -. t R w <-> -. t R a ) ) |
| 86 |
83 85
|
imbi12d |
|- ( w = a -> ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> -. t R w ) <-> ( ( ( ph /\ a e. ran G /\ t e. ran G ) /\ ( F ` a ) = ( F ` t ) ) -> -. t R a ) ) ) |
| 87 |
36
|
elrnmpt |
|- ( w e. _V -> ( w e. ran G <-> E. u e. ran F w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) ) |
| 88 |
87
|
elv |
|- ( w e. ran G <-> E. u e. ran F w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 89 |
88
|
biimpi |
|- ( w e. ran G -> E. u e. ran F w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 90 |
89
|
adantr |
|- ( ( w e. ran G /\ ( F ` w ) = ( F ` t ) ) -> E. u e. ran F w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 91 |
90
|
3ad2antl2 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> E. u e. ran F w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 92 |
|
simp3 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 93 |
92
|
eqcomd |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) = w ) |
| 94 |
|
simp11 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ph ) |
| 95 |
|
id |
|- ( w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) -> w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 96 |
|
breq2 |
|- ( v = w -> ( t R v <-> t R w ) ) |
| 97 |
96
|
notbid |
|- ( v = w -> ( -. t R v <-> -. t R w ) ) |
| 98 |
97
|
ralbidv |
|- ( v = w -> ( A. t e. ( `' F " { u } ) -. t R v <-> A. t e. ( `' F " { u } ) -. t R w ) ) |
| 99 |
98
|
cbvriotavw |
|- ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) = ( iota_ w e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R w ) |
| 100 |
95 99
|
eqtr2di |
|- ( w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) -> ( iota_ w e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R w ) = w ) |
| 101 |
100
|
3ad2ant3 |
|- ( ( ph /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( iota_ w e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R w ) = w ) |
| 102 |
98
|
cbvreuvw |
|- ( E! v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v <-> E! w e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R w ) |
| 103 |
17 102
|
sylib |
|- ( ( ph /\ u e. ran F ) -> E! w e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R w ) |
| 104 |
|
riota1 |
|- ( E! w e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R w -> ( ( w e. ( `' F " { u } ) /\ A. t e. ( `' F " { u } ) -. t R w ) <-> ( iota_ w e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R w ) = w ) ) |
| 105 |
103 104
|
syl |
|- ( ( ph /\ u e. ran F ) -> ( ( w e. ( `' F " { u } ) /\ A. t e. ( `' F " { u } ) -. t R w ) <-> ( iota_ w e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R w ) = w ) ) |
| 106 |
105
|
3adant3 |
|- ( ( ph /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( ( w e. ( `' F " { u } ) /\ A. t e. ( `' F " { u } ) -. t R w ) <-> ( iota_ w e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R w ) = w ) ) |
| 107 |
101 106
|
mpbird |
|- ( ( ph /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( w e. ( `' F " { u } ) /\ A. t e. ( `' F " { u } ) -. t R w ) ) |
| 108 |
107
|
simpld |
|- ( ( ph /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> w e. ( `' F " { u } ) ) |
| 109 |
94 108
|
syld3an1 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> w e. ( `' F " { u } ) ) |
| 110 |
|
simp2 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> u e. ran F ) |
| 111 |
94 110 17
|
syl2anc |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> E! v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) |
| 112 |
98
|
riota2 |
|- ( ( w e. ( `' F " { u } ) /\ E! v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) -> ( A. t e. ( `' F " { u } ) -. t R w <-> ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) = w ) ) |
| 113 |
109 111 112
|
syl2anc |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( A. t e. ( `' F " { u } ) -. t R w <-> ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) = w ) ) |
| 114 |
93 113
|
mpbird |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> A. t e. ( `' F " { u } ) -. t R w ) |
| 115 |
114
|
3adant1r |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> A. t e. ( `' F " { u } ) -. t R w ) |
| 116 |
38
|
sselda |
|- ( ( ph /\ t e. ran G ) -> t e. A ) |
| 117 |
116
|
3adant2 |
|- ( ( ph /\ w e. ran G /\ t e. ran G ) -> t e. A ) |
| 118 |
117
|
adantr |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> t e. A ) |
| 119 |
118
|
3ad2ant1 |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> t e. A ) |
| 120 |
55
|
ad2antlr |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F ) -> ( F ` t ) = ( F ` w ) ) |
| 121 |
120
|
3adant3 |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( F ` t ) = ( F ` w ) ) |
| 122 |
|
fniniseg |
|- ( F Fn A -> ( w e. ( `' F " { u } ) <-> ( w e. A /\ ( F ` w ) = u ) ) ) |
| 123 |
94 1 122
|
3syl |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( w e. ( `' F " { u } ) <-> ( w e. A /\ ( F ` w ) = u ) ) ) |
| 124 |
109 123
|
mpbid |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( w e. A /\ ( F ` w ) = u ) ) |
| 125 |
124
|
simprd |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( F ` w ) = u ) |
| 126 |
125
|
3adant1r |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( F ` w ) = u ) |
| 127 |
121 126
|
eqtrd |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( F ` t ) = u ) |
| 128 |
|
fniniseg |
|- ( F Fn A -> ( t e. ( `' F " { u } ) <-> ( t e. A /\ ( F ` t ) = u ) ) ) |
| 129 |
1 128
|
syl |
|- ( ph -> ( t e. ( `' F " { u } ) <-> ( t e. A /\ ( F ` t ) = u ) ) ) |
| 130 |
129
|
3ad2ant1 |
|- ( ( ph /\ w e. ran G /\ t e. ran G ) -> ( t e. ( `' F " { u } ) <-> ( t e. A /\ ( F ` t ) = u ) ) ) |
| 131 |
130
|
ad2antrr |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F ) -> ( t e. ( `' F " { u } ) <-> ( t e. A /\ ( F ` t ) = u ) ) ) |
| 132 |
131
|
3adant3 |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> ( t e. ( `' F " { u } ) <-> ( t e. A /\ ( F ` t ) = u ) ) ) |
| 133 |
119 127 132
|
mpbir2and |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> t e. ( `' F " { u } ) ) |
| 134 |
|
rspa |
|- ( ( A. t e. ( `' F " { u } ) -. t R w /\ t e. ( `' F " { u } ) ) -> -. t R w ) |
| 135 |
115 133 134
|
syl2anc |
|- ( ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) /\ u e. ran F /\ w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) -> -. t R w ) |
| 136 |
135
|
rexlimdv3a |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> ( E. u e. ran F w = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) -> -. t R w ) ) |
| 137 |
91 136
|
mpd |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> -. t R w ) |
| 138 |
86 137
|
chvarvv |
|- ( ( ( ph /\ a e. ran G /\ t e. ran G ) /\ ( F ` a ) = ( F ` t ) ) -> -. t R a ) |
| 139 |
79 138
|
chvarvv |
|- ( ( ( ph /\ a e. ran G /\ b e. ran G ) /\ ( F ` a ) = ( F ` b ) ) -> -. b R a ) |
| 140 |
71 139
|
chvarvv |
|- ( ( ( ph /\ t e. ran G /\ b e. ran G ) /\ ( F ` t ) = ( F ` b ) ) -> -. b R t ) |
| 141 |
64 140
|
chvarvv |
|- ( ( ( ph /\ t e. ran G /\ w e. ran G ) /\ ( F ` t ) = ( F ` w ) ) -> -. w R t ) |
| 142 |
51 52 53 56 141
|
syl31anc |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> -. w R t ) |
| 143 |
|
weso |
|- ( R We A -> R Or A ) |
| 144 |
3 143
|
syl |
|- ( ph -> R Or A ) |
| 145 |
144
|
adantr |
|- ( ( ph /\ ( F ` w ) = ( F ` t ) ) -> R Or A ) |
| 146 |
145
|
3ad2antl1 |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> R Or A ) |
| 147 |
38
|
sselda |
|- ( ( ph /\ w e. ran G ) -> w e. A ) |
| 148 |
147
|
3adant3 |
|- ( ( ph /\ w e. ran G /\ t e. ran G ) -> w e. A ) |
| 149 |
148
|
adantr |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> w e. A ) |
| 150 |
|
sotrieq2 |
|- ( ( R Or A /\ ( w e. A /\ t e. A ) ) -> ( w = t <-> ( -. w R t /\ -. t R w ) ) ) |
| 151 |
146 149 118 150
|
syl12anc |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> ( w = t <-> ( -. w R t /\ -. t R w ) ) ) |
| 152 |
142 137 151
|
mpbir2and |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( F ` w ) = ( F ` t ) ) -> w = t ) |
| 153 |
50 152
|
syldan |
|- ( ( ( ph /\ w e. ran G /\ t e. ran G ) /\ ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) ) -> w = t ) |
| 154 |
153
|
ex |
|- ( ( ph /\ w e. ran G /\ t e. ran G ) -> ( ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) -> w = t ) ) |
| 155 |
154
|
3expb |
|- ( ( ph /\ ( w e. ran G /\ t e. ran G ) ) -> ( ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) -> w = t ) ) |
| 156 |
155
|
ralrimivva |
|- ( ph -> A. w e. ran G A. t e. ran G ( ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) -> w = t ) ) |
| 157 |
|
dff13 |
|- ( ( F |` ran G ) : ran G -1-1-> ran F <-> ( ( F |` ran G ) : ran G --> ran F /\ A. w e. ran G A. t e. ran G ( ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` t ) -> w = t ) ) ) |
| 158 |
42 156 157
|
sylanbrc |
|- ( ph -> ( F |` ran G ) : ran G -1-1-> ran F ) |
| 159 |
|
riotaex |
|- ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) e. _V |
| 160 |
159
|
rgenw |
|- A. u e. ran F ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) e. _V |
| 161 |
36
|
fnmpt |
|- ( A. u e. ran F ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) e. _V -> G Fn ran F ) |
| 162 |
160 161
|
mp1i |
|- ( ph -> G Fn ran F ) |
| 163 |
|
dffn3 |
|- ( G Fn ran F <-> G : ran F --> ran G ) |
| 164 |
162 163
|
sylib |
|- ( ph -> G : ran F --> ran G ) |
| 165 |
164
|
ffvelcdmda |
|- ( ( ph /\ u e. ran F ) -> ( G ` u ) e. ran G ) |
| 166 |
165
|
fvresd |
|- ( ( ph /\ u e. ran F ) -> ( ( F |` ran G ) ` ( G ` u ) ) = ( F ` ( G ` u ) ) ) |
| 167 |
|
simpr |
|- ( ( ph /\ u e. ran F ) -> u e. ran F ) |
| 168 |
159
|
a1i |
|- ( ( ph /\ u e. ran F ) -> ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) e. _V ) |
| 169 |
4 34 167 168
|
fvmptd3 |
|- ( ( ph /\ u e. ran F ) -> ( G ` u ) = ( iota_ v e. ( `' F " { u } ) A. t e. ( `' F " { u } ) -. t R v ) ) |
| 170 |
169 19
|
eqeltrd |
|- ( ( ph /\ u e. ran F ) -> ( G ` u ) e. ( `' F " { u } ) ) |
| 171 |
|
fvex |
|- ( G ` u ) e. _V |
| 172 |
|
eleq1 |
|- ( w = ( G ` u ) -> ( w e. ( `' F " { u } ) <-> ( G ` u ) e. ( `' F " { u } ) ) ) |
| 173 |
|
eleq1 |
|- ( w = ( G ` u ) -> ( w e. A <-> ( G ` u ) e. A ) ) |
| 174 |
|
fveqeq2 |
|- ( w = ( G ` u ) -> ( ( F ` w ) = u <-> ( F ` ( G ` u ) ) = u ) ) |
| 175 |
173 174
|
anbi12d |
|- ( w = ( G ` u ) -> ( ( w e. A /\ ( F ` w ) = u ) <-> ( ( G ` u ) e. A /\ ( F ` ( G ` u ) ) = u ) ) ) |
| 176 |
172 175
|
bibi12d |
|- ( w = ( G ` u ) -> ( ( w e. ( `' F " { u } ) <-> ( w e. A /\ ( F ` w ) = u ) ) <-> ( ( G ` u ) e. ( `' F " { u } ) <-> ( ( G ` u ) e. A /\ ( F ` ( G ` u ) ) = u ) ) ) ) |
| 177 |
176
|
imbi2d |
|- ( w = ( G ` u ) -> ( ( ph -> ( w e. ( `' F " { u } ) <-> ( w e. A /\ ( F ` w ) = u ) ) ) <-> ( ph -> ( ( G ` u ) e. ( `' F " { u } ) <-> ( ( G ` u ) e. A /\ ( F ` ( G ` u ) ) = u ) ) ) ) ) |
| 178 |
1 122
|
syl |
|- ( ph -> ( w e. ( `' F " { u } ) <-> ( w e. A /\ ( F ` w ) = u ) ) ) |
| 179 |
171 177 178
|
vtocl |
|- ( ph -> ( ( G ` u ) e. ( `' F " { u } ) <-> ( ( G ` u ) e. A /\ ( F ` ( G ` u ) ) = u ) ) ) |
| 180 |
179
|
adantr |
|- ( ( ph /\ u e. ran F ) -> ( ( G ` u ) e. ( `' F " { u } ) <-> ( ( G ` u ) e. A /\ ( F ` ( G ` u ) ) = u ) ) ) |
| 181 |
170 180
|
mpbid |
|- ( ( ph /\ u e. ran F ) -> ( ( G ` u ) e. A /\ ( F ` ( G ` u ) ) = u ) ) |
| 182 |
181
|
simprd |
|- ( ( ph /\ u e. ran F ) -> ( F ` ( G ` u ) ) = u ) |
| 183 |
166 182
|
eqtr2d |
|- ( ( ph /\ u e. ran F ) -> u = ( ( F |` ran G ) ` ( G ` u ) ) ) |
| 184 |
|
fveq2 |
|- ( w = ( G ` u ) -> ( ( F |` ran G ) ` w ) = ( ( F |` ran G ) ` ( G ` u ) ) ) |
| 185 |
184
|
rspceeqv |
|- ( ( ( G ` u ) e. ran G /\ u = ( ( F |` ran G ) ` ( G ` u ) ) ) -> E. w e. ran G u = ( ( F |` ran G ) ` w ) ) |
| 186 |
165 183 185
|
syl2anc |
|- ( ( ph /\ u e. ran F ) -> E. w e. ran G u = ( ( F |` ran G ) ` w ) ) |
| 187 |
186
|
ralrimiva |
|- ( ph -> A. u e. ran F E. w e. ran G u = ( ( F |` ran G ) ` w ) ) |
| 188 |
|
dffo3 |
|- ( ( F |` ran G ) : ran G -onto-> ran F <-> ( ( F |` ran G ) : ran G --> ran F /\ A. u e. ran F E. w e. ran G u = ( ( F |` ran G ) ` w ) ) ) |
| 189 |
42 187 188
|
sylanbrc |
|- ( ph -> ( F |` ran G ) : ran G -onto-> ran F ) |
| 190 |
|
df-f1o |
|- ( ( F |` ran G ) : ran G -1-1-onto-> ran F <-> ( ( F |` ran G ) : ran G -1-1-> ran F /\ ( F |` ran G ) : ran G -onto-> ran F ) ) |
| 191 |
158 189 190
|
sylanbrc |
|- ( ph -> ( F |` ran G ) : ran G -1-1-onto-> ran F ) |
| 192 |
|
reseq2 |
|- ( v = ran G -> ( F |` v ) = ( F |` ran G ) ) |
| 193 |
|
id |
|- ( v = ran G -> v = ran G ) |
| 194 |
|
eqidd |
|- ( v = ran G -> ran F = ran F ) |
| 195 |
192 193 194
|
f1oeq123d |
|- ( v = ran G -> ( ( F |` v ) : v -1-1-onto-> ran F <-> ( F |` ran G ) : ran G -1-1-onto-> ran F ) ) |
| 196 |
195
|
rspcev |
|- ( ( ran G e. ~P A /\ ( F |` ran G ) : ran G -1-1-onto-> ran F ) -> E. v e. ~P A ( F |` v ) : v -1-1-onto-> ran F ) |
| 197 |
39 191 196
|
syl2anc |
|- ( ph -> E. v e. ~P A ( F |` v ) : v -1-1-onto-> ran F ) |
| 198 |
|
reseq2 |
|- ( v = x -> ( F |` v ) = ( F |` x ) ) |
| 199 |
|
id |
|- ( v = x -> v = x ) |
| 200 |
|
eqidd |
|- ( v = x -> ran F = ran F ) |
| 201 |
198 199 200
|
f1oeq123d |
|- ( v = x -> ( ( F |` v ) : v -1-1-onto-> ran F <-> ( F |` x ) : x -1-1-onto-> ran F ) ) |
| 202 |
201
|
cbvrexvw |
|- ( E. v e. ~P A ( F |` v ) : v -1-1-onto-> ran F <-> E. x e. ~P A ( F |` x ) : x -1-1-onto-> ran F ) |
| 203 |
197 202
|
sylib |
|- ( ph -> E. x e. ~P A ( F |` x ) : x -1-1-onto-> ran F ) |