Metamath Proof Explorer


Theorem rpsup

Description: The positive reals are unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion rpsup
|- sup ( RR+ , RR* , < ) = +oo

Proof

Step Hyp Ref Expression
1 ioorp
 |-  ( 0 (,) +oo ) = RR+
2 1 supeq1i
 |-  sup ( ( 0 (,) +oo ) , RR* , < ) = sup ( RR+ , RR* , < )
3 0xr
 |-  0 e. RR*
4 0re
 |-  0 e. RR
5 renepnf
 |-  ( 0 e. RR -> 0 =/= +oo )
6 4 5 ax-mp
 |-  0 =/= +oo
7 ioopnfsup
 |-  ( ( 0 e. RR* /\ 0 =/= +oo ) -> sup ( ( 0 (,) +oo ) , RR* , < ) = +oo )
8 3 6 7 mp2an
 |-  sup ( ( 0 (,) +oo ) , RR* , < ) = +oo
9 2 8 eqtr3i
 |-  sup ( RR+ , RR* , < ) = +oo