| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
| 2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
| 4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
| 5 |
|
ruclem10.6 |
|- ( ph -> M e. NN0 ) |
| 6 |
|
ruclem10.7 |
|- ( ph -> N e. NN0 ) |
| 7 |
1 2 3 4
|
ruclem6 |
|- ( ph -> G : NN0 --> ( RR X. RR ) ) |
| 8 |
7 5
|
ffvelcdmd |
|- ( ph -> ( G ` M ) e. ( RR X. RR ) ) |
| 9 |
|
xp1st |
|- ( ( G ` M ) e. ( RR X. RR ) -> ( 1st ` ( G ` M ) ) e. RR ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( 1st ` ( G ` M ) ) e. RR ) |
| 11 |
6 5
|
ifcld |
|- ( ph -> if ( M <_ N , N , M ) e. NN0 ) |
| 12 |
7 11
|
ffvelcdmd |
|- ( ph -> ( G ` if ( M <_ N , N , M ) ) e. ( RR X. RR ) ) |
| 13 |
|
xp1st |
|- ( ( G ` if ( M <_ N , N , M ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
| 15 |
7 6
|
ffvelcdmd |
|- ( ph -> ( G ` N ) e. ( RR X. RR ) ) |
| 16 |
|
xp2nd |
|- ( ( G ` N ) e. ( RR X. RR ) -> ( 2nd ` ( G ` N ) ) e. RR ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( 2nd ` ( G ` N ) ) e. RR ) |
| 18 |
5
|
nn0red |
|- ( ph -> M e. RR ) |
| 19 |
6
|
nn0red |
|- ( ph -> N e. RR ) |
| 20 |
|
max1 |
|- ( ( M e. RR /\ N e. RR ) -> M <_ if ( M <_ N , N , M ) ) |
| 21 |
18 19 20
|
syl2anc |
|- ( ph -> M <_ if ( M <_ N , N , M ) ) |
| 22 |
5
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 23 |
11
|
nn0zd |
|- ( ph -> if ( M <_ N , N , M ) e. ZZ ) |
| 24 |
|
eluz |
|- ( ( M e. ZZ /\ if ( M <_ N , N , M ) e. ZZ ) -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` M ) <-> M <_ if ( M <_ N , N , M ) ) ) |
| 25 |
22 23 24
|
syl2anc |
|- ( ph -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` M ) <-> M <_ if ( M <_ N , N , M ) ) ) |
| 26 |
21 25
|
mpbird |
|- ( ph -> if ( M <_ N , N , M ) e. ( ZZ>= ` M ) ) |
| 27 |
1 2 3 4 5 26
|
ruclem9 |
|- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) /\ ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 28 |
27
|
simpld |
|- ( ph -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) ) |
| 29 |
|
xp2nd |
|- ( ( G ` if ( M <_ N , N , M ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
| 30 |
12 29
|
syl |
|- ( ph -> ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
| 31 |
1 2 3 4
|
ruclem8 |
|- ( ( ph /\ if ( M <_ N , N , M ) e. NN0 ) -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) < ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) ) |
| 32 |
11 31
|
mpdan |
|- ( ph -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) < ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) ) |
| 33 |
|
max2 |
|- ( ( M e. RR /\ N e. RR ) -> N <_ if ( M <_ N , N , M ) ) |
| 34 |
18 19 33
|
syl2anc |
|- ( ph -> N <_ if ( M <_ N , N , M ) ) |
| 35 |
6
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 36 |
|
eluz |
|- ( ( N e. ZZ /\ if ( M <_ N , N , M ) e. ZZ ) -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` N ) <-> N <_ if ( M <_ N , N , M ) ) ) |
| 37 |
35 23 36
|
syl2anc |
|- ( ph -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` N ) <-> N <_ if ( M <_ N , N , M ) ) ) |
| 38 |
34 37
|
mpbird |
|- ( ph -> if ( M <_ N , N , M ) e. ( ZZ>= ` N ) ) |
| 39 |
1 2 3 4 6 38
|
ruclem9 |
|- ( ph -> ( ( 1st ` ( G ` N ) ) <_ ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) /\ ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) <_ ( 2nd ` ( G ` N ) ) ) ) |
| 40 |
39
|
simprd |
|- ( ph -> ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) <_ ( 2nd ` ( G ` N ) ) ) |
| 41 |
14 30 17 32 40
|
ltletrd |
|- ( ph -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) < ( 2nd ` ( G ` N ) ) ) |
| 42 |
10 14 17 28 41
|
lelttrd |
|- ( ph -> ( 1st ` ( G ` M ) ) < ( 2nd ` ( G ` N ) ) ) |