| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ruc.1 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ ℝ ) | 
						
							| 2 |  | ruc.2 | ⊢ ( 𝜑  →  𝐷  =  ( 𝑥  ∈  ( ℝ  ×  ℝ ) ,  𝑦  ∈  ℝ  ↦  ⦋ ( ( ( 1st  ‘ 𝑥 )  +  ( 2nd  ‘ 𝑥 ) )  /  2 )  /  𝑚 ⦌ if ( 𝑚  <  𝑦 ,  〈 ( 1st  ‘ 𝑥 ) ,  𝑚 〉 ,  〈 ( ( 𝑚  +  ( 2nd  ‘ 𝑥 ) )  /  2 ) ,  ( 2nd  ‘ 𝑥 ) 〉 ) ) ) | 
						
							| 3 |  | ruc.4 | ⊢ 𝐶  =  ( { 〈 0 ,  〈 0 ,  1 〉 〉 }  ∪  𝐹 ) | 
						
							| 4 |  | ruc.5 | ⊢ 𝐺  =  seq 0 ( 𝐷 ,  𝐶 ) | 
						
							| 5 |  | ruclem10.6 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 6 |  | ruclem10.7 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 | 1 2 3 4 | ruclem6 | ⊢ ( 𝜑  →  𝐺 : ℕ0 ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 8 | 7 5 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑀 )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 9 |  | xp1st | ⊢ ( ( 𝐺 ‘ 𝑀 )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐺 ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐺 ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 11 | 6 5 | ifcld | ⊢ ( 𝜑  →  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ℕ0 ) | 
						
							| 12 | 7 11 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 13 |  | xp1st | ⊢ ( ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  ∈  ℝ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  ∈  ℝ ) | 
						
							| 15 | 7 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑁 )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 16 |  | xp2nd | ⊢ ( ( 𝐺 ‘ 𝑁 )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐺 ‘ 𝑁 ) )  ∈  ℝ ) | 
						
							| 18 | 5 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 19 | 6 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 20 |  | max1 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  𝑀  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) | 
						
							| 21 | 18 19 20 | syl2anc | ⊢ ( 𝜑  →  𝑀  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) | 
						
							| 22 | 5 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 23 | 11 | nn0zd | ⊢ ( 𝜑  →  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ℤ ) | 
						
							| 24 |  | eluz | ⊢ ( ( 𝑀  ∈  ℤ  ∧  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ℤ )  →  ( if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑀  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 25 | 22 23 24 | syl2anc | ⊢ ( 𝜑  →  ( if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑀  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 26 | 21 25 | mpbird | ⊢ ( 𝜑  →  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 27 | 1 2 3 4 5 26 | ruclem9 | ⊢ ( 𝜑  →  ( ( 1st  ‘ ( 𝐺 ‘ 𝑀 ) )  ≤  ( 1st  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  ∧  ( 2nd  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑀 ) ) ) ) | 
						
							| 28 | 27 | simpld | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐺 ‘ 𝑀 ) )  ≤  ( 1st  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) ) | 
						
							| 29 |  | xp2nd | ⊢ ( ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  ∈  ℝ ) | 
						
							| 30 | 12 29 | syl | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  ∈  ℝ ) | 
						
							| 31 | 1 2 3 4 | ruclem8 | ⊢ ( ( 𝜑  ∧  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ℕ0 )  →  ( 1st  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  <  ( 2nd  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) ) | 
						
							| 32 | 11 31 | mpdan | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  <  ( 2nd  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) ) | 
						
							| 33 |  | max2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  𝑁  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) | 
						
							| 34 | 18 19 33 | syl2anc | ⊢ ( 𝜑  →  𝑁  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) | 
						
							| 35 | 6 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 36 |  | eluz | ⊢ ( ( 𝑁  ∈  ℤ  ∧  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ℤ )  →  ( if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑁 )  ↔  𝑁  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 37 | 35 23 36 | syl2anc | ⊢ ( 𝜑  →  ( if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑁 )  ↔  𝑁  ≤  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) ) | 
						
							| 38 | 34 37 | mpbird | ⊢ ( 𝜑  →  if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 39 | 1 2 3 4 6 38 | ruclem9 | ⊢ ( 𝜑  →  ( ( 1st  ‘ ( 𝐺 ‘ 𝑁 ) )  ≤  ( 1st  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  ∧  ( 2nd  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑁 ) ) ) ) | 
						
							| 40 | 39 | simprd | ⊢ ( 𝜑  →  ( 2nd  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  ≤  ( 2nd  ‘ ( 𝐺 ‘ 𝑁 ) ) ) | 
						
							| 41 | 14 30 17 32 40 | ltletrd | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐺 ‘ if ( 𝑀  ≤  𝑁 ,  𝑁 ,  𝑀 ) ) )  <  ( 2nd  ‘ ( 𝐺 ‘ 𝑁 ) ) ) | 
						
							| 42 | 10 14 17 28 41 | lelttrd | ⊢ ( 𝜑  →  ( 1st  ‘ ( 𝐺 ‘ 𝑀 ) )  <  ( 2nd  ‘ ( 𝐺 ‘ 𝑁 ) ) ) |