| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ruc.1 |  |-  ( ph -> F : NN --> RR ) | 
						
							| 2 |  | ruc.2 |  |-  ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) | 
						
							| 3 |  | ruc.4 |  |-  C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) | 
						
							| 4 |  | ruc.5 |  |-  G = seq 0 ( D , C ) | 
						
							| 5 |  | ruclem9.6 |  |-  ( ph -> M e. NN0 ) | 
						
							| 6 |  | ruclem9.7 |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 7 |  | 2fveq3 |  |-  ( k = M -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` M ) ) ) | 
						
							| 8 | 7 | breq2d |  |-  ( k = M -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) ) ) | 
						
							| 9 |  | 2fveq3 |  |-  ( k = M -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` M ) ) ) | 
						
							| 10 | 9 | breq1d |  |-  ( k = M -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) | 
						
							| 11 | 8 10 | anbi12d |  |-  ( k = M -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( k = M -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) | 
						
							| 13 |  | 2fveq3 |  |-  ( k = n -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` n ) ) ) | 
						
							| 14 | 13 | breq2d |  |-  ( k = n -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) ) ) | 
						
							| 15 |  | 2fveq3 |  |-  ( k = n -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` n ) ) ) | 
						
							| 16 | 15 | breq1d |  |-  ( k = n -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) | 
						
							| 17 | 14 16 | anbi12d |  |-  ( k = n -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) | 
						
							| 18 | 17 | imbi2d |  |-  ( k = n -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) | 
						
							| 19 |  | 2fveq3 |  |-  ( k = ( n + 1 ) -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` ( n + 1 ) ) ) ) | 
						
							| 20 | 19 | breq2d |  |-  ( k = ( n + 1 ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) | 
						
							| 21 |  | 2fveq3 |  |-  ( k = ( n + 1 ) -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` ( n + 1 ) ) ) ) | 
						
							| 22 | 21 | breq1d |  |-  ( k = ( n + 1 ) -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) | 
						
							| 23 | 20 22 | anbi12d |  |-  ( k = ( n + 1 ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) | 
						
							| 24 | 23 | imbi2d |  |-  ( k = ( n + 1 ) -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) | 
						
							| 25 |  | 2fveq3 |  |-  ( k = N -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` N ) ) ) | 
						
							| 26 | 25 | breq2d |  |-  ( k = N -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) ) ) | 
						
							| 27 |  | 2fveq3 |  |-  ( k = N -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` N ) ) ) | 
						
							| 28 | 27 | breq1d |  |-  ( k = N -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) | 
						
							| 29 | 26 28 | anbi12d |  |-  ( k = N -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) | 
						
							| 30 | 29 | imbi2d |  |-  ( k = N -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) | 
						
							| 31 | 1 2 3 4 | ruclem6 |  |-  ( ph -> G : NN0 --> ( RR X. RR ) ) | 
						
							| 32 | 31 5 | ffvelcdmd |  |-  ( ph -> ( G ` M ) e. ( RR X. RR ) ) | 
						
							| 33 |  | xp1st |  |-  ( ( G ` M ) e. ( RR X. RR ) -> ( 1st ` ( G ` M ) ) e. RR ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( 1st ` ( G ` M ) ) e. RR ) | 
						
							| 35 | 34 | leidd |  |-  ( ph -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) ) | 
						
							| 36 |  | xp2nd |  |-  ( ( G ` M ) e. ( RR X. RR ) -> ( 2nd ` ( G ` M ) ) e. RR ) | 
						
							| 37 | 32 36 | syl |  |-  ( ph -> ( 2nd ` ( G ` M ) ) e. RR ) | 
						
							| 38 | 37 | leidd |  |-  ( ph -> ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) | 
						
							| 39 | 35 38 | jca |  |-  ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) | 
						
							| 40 | 1 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> F : NN --> RR ) | 
						
							| 41 | 2 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) | 
						
							| 42 | 31 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> G : NN0 --> ( RR X. RR ) ) | 
						
							| 43 |  | eluznn0 |  |-  ( ( M e. NN0 /\ n e. ( ZZ>= ` M ) ) -> n e. NN0 ) | 
						
							| 44 | 5 43 | sylan |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> n e. NN0 ) | 
						
							| 45 | 42 44 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` n ) e. ( RR X. RR ) ) | 
						
							| 46 |  | xp1st |  |-  ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) e. RR ) | 
						
							| 48 |  | xp2nd |  |-  ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) | 
						
							| 49 | 45 48 | syl |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` n ) ) e. RR ) | 
						
							| 50 |  | nn0p1nn |  |-  ( n e. NN0 -> ( n + 1 ) e. NN ) | 
						
							| 51 | 44 50 | syl |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( n + 1 ) e. NN ) | 
						
							| 52 | 40 51 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( F ` ( n + 1 ) ) e. RR ) | 
						
							| 53 |  | eqid |  |-  ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) | 
						
							| 54 |  | eqid |  |-  ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) | 
						
							| 55 | 1 2 3 4 | ruclem8 |  |-  ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` n ) ) ) | 
						
							| 56 | 44 55 | syldan |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` n ) ) ) | 
						
							| 57 | 40 41 47 49 52 53 54 56 | ruclem2 |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 1st ` ( G ` n ) ) <_ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) /\ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) < ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) /\ ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) <_ ( 2nd ` ( G ` n ) ) ) ) | 
						
							| 58 | 57 | simp1d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) <_ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) | 
						
							| 59 | 1 2 3 4 | ruclem7 |  |-  ( ( ph /\ n e. NN0 ) -> ( G ` ( n + 1 ) ) = ( ( G ` n ) D ( F ` ( n + 1 ) ) ) ) | 
						
							| 60 | 44 59 | syldan |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) = ( ( G ` n ) D ( F ` ( n + 1 ) ) ) ) | 
						
							| 61 |  | 1st2nd2 |  |-  ( ( G ` n ) e. ( RR X. RR ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) | 
						
							| 62 | 45 61 | syl |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) | 
						
							| 63 | 62 | oveq1d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( G ` n ) D ( F ` ( n + 1 ) ) ) = ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) | 
						
							| 64 | 60 63 | eqtrd |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) = ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) | 
						
							| 65 | 64 | fveq2d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` ( n + 1 ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) | 
						
							| 66 | 58 65 | breqtrrd |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) | 
						
							| 67 | 34 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` M ) ) e. RR ) | 
						
							| 68 |  | peano2nn0 |  |-  ( n e. NN0 -> ( n + 1 ) e. NN0 ) | 
						
							| 69 | 44 68 | syl |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( n + 1 ) e. NN0 ) | 
						
							| 70 | 42 69 | ffvelcdmd |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) e. ( RR X. RR ) ) | 
						
							| 71 |  | xp1st |  |-  ( ( G ` ( n + 1 ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) | 
						
							| 72 | 70 71 | syl |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) | 
						
							| 73 |  | letr |  |-  ( ( ( 1st ` ( G ` M ) ) e. RR /\ ( 1st ` ( G ` n ) ) e. RR /\ ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) | 
						
							| 74 | 67 47 72 73 | syl3anc |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) | 
						
							| 75 | 66 74 | mpan2d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) | 
						
							| 76 | 64 | fveq2d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) | 
						
							| 77 | 57 | simp3d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) <_ ( 2nd ` ( G ` n ) ) ) | 
						
							| 78 | 76 77 | eqbrtrd |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) ) | 
						
							| 79 |  | xp2nd |  |-  ( ( G ` ( n + 1 ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR ) | 
						
							| 80 | 70 79 | syl |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR ) | 
						
							| 81 | 37 | adantr |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` M ) ) e. RR ) | 
						
							| 82 |  | letr |  |-  ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR /\ ( 2nd ` ( G ` n ) ) e. RR /\ ( 2nd ` ( G ` M ) ) e. RR ) -> ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) | 
						
							| 83 | 80 49 81 82 | syl3anc |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) | 
						
							| 84 | 78 83 | mpand |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) | 
						
							| 85 | 75 84 | anim12d |  |-  ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) | 
						
							| 86 | 85 | expcom |  |-  ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) | 
						
							| 87 | 86 | a2d |  |-  ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) -> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) | 
						
							| 88 | 12 18 24 30 39 87 | uzind4i |  |-  ( N e. ( ZZ>= ` M ) -> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) | 
						
							| 89 | 6 88 | mpcom |  |-  ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |