| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( a = (/) -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` (/) ) ) | 
						
							| 2 | 1 | releqd |  |-  ( a = (/) -> ( Rel ( ( M Sat E ) ` a ) <-> Rel ( ( M Sat E ) ` (/) ) ) ) | 
						
							| 3 | 2 | imbi2d |  |-  ( a = (/) -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` a ) ) <-> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` (/) ) ) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( a = b -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` b ) ) | 
						
							| 5 | 4 | releqd |  |-  ( a = b -> ( Rel ( ( M Sat E ) ` a ) <-> Rel ( ( M Sat E ) ` b ) ) ) | 
						
							| 6 | 5 | imbi2d |  |-  ( a = b -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` a ) ) <-> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` b ) ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( a = suc b -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` suc b ) ) | 
						
							| 8 | 7 | releqd |  |-  ( a = suc b -> ( Rel ( ( M Sat E ) ` a ) <-> Rel ( ( M Sat E ) ` suc b ) ) ) | 
						
							| 9 | 8 | imbi2d |  |-  ( a = suc b -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` a ) ) <-> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` suc b ) ) ) ) | 
						
							| 10 |  | fveq2 |  |-  ( a = N -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` N ) ) | 
						
							| 11 | 10 | releqd |  |-  ( a = N -> ( Rel ( ( M Sat E ) ` a ) <-> Rel ( ( M Sat E ) ` N ) ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( a = N -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` a ) ) <-> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` N ) ) ) ) | 
						
							| 13 |  | relopabv |  |-  Rel { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } | 
						
							| 14 |  | eqid |  |-  ( M Sat E ) = ( M Sat E ) | 
						
							| 15 | 14 | satfv0 |  |-  ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` (/) ) = { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) | 
						
							| 16 | 15 | releqd |  |-  ( ( M e. V /\ E e. W ) -> ( Rel ( ( M Sat E ) ` (/) ) <-> Rel { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) ) | 
						
							| 17 | 13 16 | mpbiri |  |-  ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` (/) ) ) | 
						
							| 18 |  | pm2.27 |  |-  ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` b ) ) -> Rel ( ( M Sat E ) ` b ) ) ) | 
						
							| 19 |  | simpr |  |-  ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> Rel ( ( M Sat E ) ` b ) ) | 
						
							| 20 |  | relopabv |  |-  Rel { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } | 
						
							| 21 |  | relun |  |-  ( Rel ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( Rel ( ( M Sat E ) ` b ) /\ Rel { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 22 | 19 20 21 | sylanblrc |  |-  ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> Rel ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 23 | 14 | satfvsuc |  |-  ( ( M e. V /\ E e. W /\ b e. _om ) -> ( ( M Sat E ) ` suc b ) = ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 24 | 23 | ad4ant123 |  |-  ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> ( ( M Sat E ) ` suc b ) = ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 25 | 24 | releqd |  |-  ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> ( Rel ( ( M Sat E ) ` suc b ) <-> Rel ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) ) | 
						
							| 26 | 22 25 | mpbird |  |-  ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> Rel ( ( M Sat E ) ` suc b ) ) | 
						
							| 27 | 26 | exp31 |  |-  ( ( M e. V /\ E e. W ) -> ( b e. _om -> ( Rel ( ( M Sat E ) ` b ) -> Rel ( ( M Sat E ) ` suc b ) ) ) ) | 
						
							| 28 | 27 | com23 |  |-  ( ( M e. V /\ E e. W ) -> ( Rel ( ( M Sat E ) ` b ) -> ( b e. _om -> Rel ( ( M Sat E ) ` suc b ) ) ) ) | 
						
							| 29 | 18 28 | syld |  |-  ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` b ) ) -> ( b e. _om -> Rel ( ( M Sat E ) ` suc b ) ) ) ) | 
						
							| 30 | 29 | com13 |  |-  ( b e. _om -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` b ) ) -> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` suc b ) ) ) ) | 
						
							| 31 | 3 6 9 12 17 30 | finds |  |-  ( N e. _om -> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` N ) ) ) | 
						
							| 32 | 31 | com12 |  |-  ( ( M e. V /\ E e. W ) -> ( N e. _om -> Rel ( ( M Sat E ) ` N ) ) ) | 
						
							| 33 | 32 | 3impia |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> Rel ( ( M Sat E ) ` N ) ) |