| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑎  =  ∅  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 )  =  ( ( 𝑀  Sat  𝐸 ) ‘ ∅ ) ) | 
						
							| 2 | 1 | releqd | ⊢ ( 𝑎  =  ∅  →  ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 )  ↔  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ ∅ ) ) ) | 
						
							| 3 | 2 | imbi2d | ⊢ ( 𝑎  =  ∅  →  ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 ) )  ↔  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ ∅ ) ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 )  =  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ) | 
						
							| 5 | 4 | releqd | ⊢ ( 𝑎  =  𝑏  →  ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 )  ↔  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 ) )  ↔  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ) ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑎  =  suc  𝑏  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 )  =  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 ) ) | 
						
							| 8 | 7 | releqd | ⊢ ( 𝑎  =  suc  𝑏  →  ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 )  ↔  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 ) ) ) | 
						
							| 9 | 8 | imbi2d | ⊢ ( 𝑎  =  suc  𝑏  →  ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 ) )  ↔  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 ) ) ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑎  =  𝑁  →  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 )  =  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) | 
						
							| 11 | 10 | releqd | ⊢ ( 𝑎  =  𝑁  →  ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 )  ↔  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑎  =  𝑁  →  ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑎 ) )  ↔  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) ) | 
						
							| 13 |  | relopabv | ⊢ Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } | 
						
							| 14 |  | eqid | ⊢ ( 𝑀  Sat  𝐸 )  =  ( 𝑀  Sat  𝐸 ) | 
						
							| 15 | 14 | satfv0 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( 𝑀  Sat  𝐸 ) ‘ ∅ )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) | 
						
							| 16 | 15 | releqd | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ ∅ )  ↔  Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑖  ∈  ω ∃ 𝑗  ∈  ω ( 𝑥  =  ( 𝑖 ∈𝑔 𝑗 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) } ) } ) ) | 
						
							| 17 | 13 16 | mpbiri | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ ∅ ) ) | 
						
							| 18 |  | pm2.27 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑏  ∈  ω )  ∧  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ) | 
						
							| 20 |  | relopabv | ⊢ Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } | 
						
							| 21 |  | relun | ⊢ ( Rel  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } )  ↔  ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 )  ∧  Rel  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) | 
						
							| 22 | 19 20 21 | sylanblrc | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑏  ∈  ω )  ∧  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) )  →  Rel  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) | 
						
							| 23 | 14 | satfvsuc | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑏  ∈  ω )  →  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 )  =  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) | 
						
							| 24 | 23 | ad4ant123 | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑏  ∈  ω )  ∧  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) )  →  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 )  =  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) | 
						
							| 25 | 24 | releqd | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑏  ∈  ω )  ∧  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) )  →  ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 )  ↔  Rel  ( ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 )  ∪  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑢  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( ∃ 𝑣  ∈  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) ( 𝑥  =  ( ( 1st  ‘ 𝑢 ) ⊼𝑔 ( 1st  ‘ 𝑣 ) )  ∧  𝑦  =  ( ( 𝑀  ↑m  ω )  ∖  ( ( 2nd  ‘ 𝑢 )  ∩  ( 2nd  ‘ 𝑣 ) ) ) )  ∨  ∃ 𝑖  ∈  ω ( 𝑥  =  ∀𝑔 𝑖 ( 1st  ‘ 𝑢 )  ∧  𝑦  =  { 𝑎  ∈  ( 𝑀  ↑m  ω )  ∣  ∀ 𝑧  ∈  𝑀 ( { 〈 𝑖 ,  𝑧 〉 }  ∪  ( 𝑎  ↾  ( ω  ∖  { 𝑖 } ) ) )  ∈  ( 2nd  ‘ 𝑢 ) } ) ) } ) ) ) | 
						
							| 26 | 22 25 | mpbird | ⊢ ( ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  ∧  𝑏  ∈  ω )  ∧  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 ) ) | 
						
							| 27 | 26 | exp31 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( 𝑏  ∈  ω  →  ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 ) ) ) ) | 
						
							| 28 | 27 | com23 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 )  →  ( 𝑏  ∈  ω  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 ) ) ) ) | 
						
							| 29 | 18 28 | syld | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) )  →  ( 𝑏  ∈  ω  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 ) ) ) ) | 
						
							| 30 | 29 | com13 | ⊢ ( 𝑏  ∈  ω  →  ( ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑏 ) )  →  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ suc  𝑏 ) ) ) ) | 
						
							| 31 | 3 6 9 12 17 30 | finds | ⊢ ( 𝑁  ∈  ω  →  ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 32 | 31 | com12 | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊 )  →  ( 𝑁  ∈  ω  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) ) | 
						
							| 33 | 32 | 3impia | ⊢ ( ( 𝑀  ∈  𝑉  ∧  𝐸  ∈  𝑊  ∧  𝑁  ∈  ω )  →  Rel  ( ( 𝑀  Sat  𝐸 ) ‘ 𝑁 ) ) |