| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satfrel |  |-  ( ( M e. V /\ E e. W /\ Y e. _om ) -> Rel ( ( M Sat E ) ` Y ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) -> Rel ( ( M Sat E ) ` Y ) ) | 
						
							| 3 |  | 1stdm |  |-  ( ( Rel ( ( M Sat E ) ` Y ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) ) | 
						
							| 4 | 2 3 | sylan |  |-  ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) ) | 
						
							| 5 |  | eleq2 |  |-  ( dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) -> ( ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) -> ( ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) ) ) | 
						
							| 8 |  | fvex |  |-  ( 1st ` u ) e. _V | 
						
							| 9 |  | eldm2g |  |-  ( ( 1st ` u ) e. _V -> ( ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) <-> E. s <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) <-> E. s <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) -> <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) | 
						
							| 12 | 2 | ad4antr |  |-  ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> Rel ( ( M Sat E ) ` Y ) ) | 
						
							| 13 |  | 1stdm |  |-  ( ( Rel ( ( M Sat E ) ` Y ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) ) | 
						
							| 14 | 12 13 | sylancom |  |-  ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) ) | 
						
							| 15 |  | eleq2 |  |-  ( dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) -> ( ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) ) ) | 
						
							| 16 | 15 | ad5antlr |  |-  ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) ) ) | 
						
							| 17 |  | fvex |  |-  ( 1st ` v ) e. _V | 
						
							| 18 |  | eldm2g |  |-  ( ( 1st ` v ) e. _V -> ( ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) <-> E. r <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  ( ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) <-> E. r <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) -> <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) | 
						
							| 21 |  | vex |  |-  s e. _V | 
						
							| 22 | 8 21 | op1std |  |-  ( a = <. ( 1st ` u ) , s >. -> ( 1st ` a ) = ( 1st ` u ) ) | 
						
							| 23 | 22 | eqcomd |  |-  ( a = <. ( 1st ` u ) , s >. -> ( 1st ` u ) = ( 1st ` a ) ) | 
						
							| 24 | 23 | ad3antlr |  |-  ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) -> ( 1st ` u ) = ( 1st ` a ) ) | 
						
							| 25 |  | vex |  |-  r e. _V | 
						
							| 26 | 17 25 | op1std |  |-  ( b = <. ( 1st ` v ) , r >. -> ( 1st ` b ) = ( 1st ` v ) ) | 
						
							| 27 | 26 | eqcomd |  |-  ( b = <. ( 1st ` v ) , r >. -> ( 1st ` v ) = ( 1st ` b ) ) | 
						
							| 28 | 24 27 | oveqan12d |  |-  ( ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) /\ b = <. ( 1st ` v ) , r >. ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = ( ( 1st ` a ) |g ( 1st ` b ) ) ) | 
						
							| 29 | 28 | eqeq2d |  |-  ( ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) /\ b = <. ( 1st ` v ) , r >. ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) | 
						
							| 30 | 29 | biimpd |  |-  ( ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) /\ b = <. ( 1st ` v ) , r >. ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) | 
						
							| 31 | 20 30 | rspcimedv |  |-  ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) | 
						
							| 32 | 31 | ex |  |-  ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) ) | 
						
							| 33 | 32 | exlimdv |  |-  ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( E. r <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) ) | 
						
							| 34 | 19 33 | biimtrid |  |-  ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) ) | 
						
							| 35 | 16 34 | sylbid |  |-  ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) ) | 
						
							| 36 | 14 35 | mpd |  |-  ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) | 
						
							| 37 | 36 | rexlimdva |  |-  ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) -> ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) | 
						
							| 38 |  | eqidd |  |-  ( a = <. ( 1st ` u ) , s >. -> i = i ) | 
						
							| 39 | 38 23 | goaleq12d |  |-  ( a = <. ( 1st ` u ) , s >. -> A.g i ( 1st ` u ) = A.g i ( 1st ` a ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( a = <. ( 1st ` u ) , s >. -> ( x = A.g i ( 1st ` u ) <-> x = A.g i ( 1st ` a ) ) ) | 
						
							| 41 | 40 | biimpd |  |-  ( a = <. ( 1st ` u ) , s >. -> ( x = A.g i ( 1st ` u ) -> x = A.g i ( 1st ` a ) ) ) | 
						
							| 42 | 41 | adantl |  |-  ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) -> ( x = A.g i ( 1st ` u ) -> x = A.g i ( 1st ` a ) ) ) | 
						
							| 43 | 42 | reximdv |  |-  ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) -> ( E. i e. _om x = A.g i ( 1st ` u ) -> E. i e. _om x = A.g i ( 1st ` a ) ) ) | 
						
							| 44 | 37 43 | orim12d |  |-  ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) | 
						
							| 45 | 11 44 | rspcimedv |  |-  ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) | 
						
							| 46 | 45 | ex |  |-  ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) ) | 
						
							| 47 | 46 | exlimdv |  |-  ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( E. s <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) ) | 
						
							| 48 | 10 47 | biimtrid |  |-  ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) ) | 
						
							| 49 | 7 48 | sylbid |  |-  ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) ) | 
						
							| 50 | 4 49 | mpd |  |-  ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) | 
						
							| 51 | 50 | rexlimdva |  |-  ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) -> ( E. u e. ( ( M Sat E ) ` Y ) ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |