Step |
Hyp |
Ref |
Expression |
1 |
|
satfrel |
|- ( ( M e. V /\ E e. W /\ Y e. _om ) -> Rel ( ( M Sat E ) ` Y ) ) |
2 |
1
|
adantr |
|- ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) -> Rel ( ( M Sat E ) ` Y ) ) |
3 |
|
1stdm |
|- ( ( Rel ( ( M Sat E ) ` Y ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) ) |
4 |
2 3
|
sylan |
|- ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) ) |
5 |
|
eleq2 |
|- ( dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) -> ( ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) ) ) |
6 |
5
|
adantl |
|- ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) -> ( ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) ) ) |
7 |
6
|
adantr |
|- ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) ) ) |
8 |
|
fvex |
|- ( 1st ` u ) e. _V |
9 |
|
eldm2g |
|- ( ( 1st ` u ) e. _V -> ( ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) <-> E. s <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) ) |
10 |
8 9
|
ax-mp |
|- ( ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) <-> E. s <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) |
11 |
|
simpr |
|- ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) -> <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) |
12 |
2
|
ad4antr |
|- ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> Rel ( ( M Sat E ) ` Y ) ) |
13 |
|
1stdm |
|- ( ( Rel ( ( M Sat E ) ` Y ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) ) |
14 |
12 13
|
sylancom |
|- ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) ) |
15 |
|
eleq2 |
|- ( dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) -> ( ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) ) ) |
16 |
15
|
ad5antlr |
|- ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) <-> ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) ) ) |
17 |
|
fvex |
|- ( 1st ` v ) e. _V |
18 |
|
eldm2g |
|- ( ( 1st ` v ) e. _V -> ( ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) <-> E. r <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) ) |
19 |
17 18
|
ax-mp |
|- ( ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) <-> E. r <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) |
20 |
|
simpr |
|- ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) -> <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) |
21 |
|
vex |
|- s e. _V |
22 |
8 21
|
op1std |
|- ( a = <. ( 1st ` u ) , s >. -> ( 1st ` a ) = ( 1st ` u ) ) |
23 |
22
|
eqcomd |
|- ( a = <. ( 1st ` u ) , s >. -> ( 1st ` u ) = ( 1st ` a ) ) |
24 |
23
|
ad3antlr |
|- ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) -> ( 1st ` u ) = ( 1st ` a ) ) |
25 |
|
vex |
|- r e. _V |
26 |
17 25
|
op1std |
|- ( b = <. ( 1st ` v ) , r >. -> ( 1st ` b ) = ( 1st ` v ) ) |
27 |
26
|
eqcomd |
|- ( b = <. ( 1st ` v ) , r >. -> ( 1st ` v ) = ( 1st ` b ) ) |
28 |
24 27
|
oveqan12d |
|- ( ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) /\ b = <. ( 1st ` v ) , r >. ) -> ( ( 1st ` u ) |g ( 1st ` v ) ) = ( ( 1st ` a ) |g ( 1st ` b ) ) ) |
29 |
28
|
eqeq2d |
|- ( ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) /\ b = <. ( 1st ` v ) , r >. ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) |
30 |
29
|
biimpd |
|- ( ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) /\ b = <. ( 1st ` v ) , r >. ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) |
31 |
20 30
|
rspcimedv |
|- ( ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) |
32 |
31
|
ex |
|- ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) ) |
33 |
32
|
exlimdv |
|- ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( E. r <. ( 1st ` v ) , r >. e. ( ( N Sat F ) ` Y ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) ) |
34 |
19 33
|
syl5bi |
|- ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` v ) e. dom ( ( N Sat F ) ` Y ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) ) |
35 |
16 34
|
sylbid |
|- ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` v ) e. dom ( ( M Sat E ) ` Y ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) ) |
36 |
14 35
|
mpd |
|- ( ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) /\ v e. ( ( M Sat E ) ` Y ) ) -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) |
37 |
36
|
rexlimdva |
|- ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) -> ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) ) |
38 |
|
eqidd |
|- ( a = <. ( 1st ` u ) , s >. -> i = i ) |
39 |
38 23
|
goaleq12d |
|- ( a = <. ( 1st ` u ) , s >. -> A.g i ( 1st ` u ) = A.g i ( 1st ` a ) ) |
40 |
39
|
eqeq2d |
|- ( a = <. ( 1st ` u ) , s >. -> ( x = A.g i ( 1st ` u ) <-> x = A.g i ( 1st ` a ) ) ) |
41 |
40
|
biimpd |
|- ( a = <. ( 1st ` u ) , s >. -> ( x = A.g i ( 1st ` u ) -> x = A.g i ( 1st ` a ) ) ) |
42 |
41
|
adantl |
|- ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) -> ( x = A.g i ( 1st ` u ) -> x = A.g i ( 1st ` a ) ) ) |
43 |
42
|
reximdv |
|- ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) -> ( E. i e. _om x = A.g i ( 1st ` u ) -> E. i e. _om x = A.g i ( 1st ` a ) ) ) |
44 |
37 43
|
orim12d |
|- ( ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) /\ a = <. ( 1st ` u ) , s >. ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
45 |
11 44
|
rspcimedv |
|- ( ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) /\ <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
46 |
45
|
ex |
|- ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) ) |
47 |
46
|
exlimdv |
|- ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( E. s <. ( 1st ` u ) , s >. e. ( ( N Sat F ) ` Y ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) ) |
48 |
10 47
|
syl5bi |
|- ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` u ) e. dom ( ( N Sat F ) ` Y ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) ) |
49 |
7 48
|
sylbid |
|- ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( ( 1st ` u ) e. dom ( ( M Sat E ) ` Y ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) ) |
50 |
4 49
|
mpd |
|- ( ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) /\ u e. ( ( M Sat E ) ` Y ) ) -> ( ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
51 |
50
|
rexlimdva |
|- ( ( ( M e. V /\ E e. W /\ Y e. _om ) /\ dom ( ( M Sat E ) ` Y ) = dom ( ( N Sat F ) ` Y ) ) -> ( E. u e. ( ( M Sat E ) ` Y ) ( E. v e. ( ( M Sat E ) ` Y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` Y ) ( E. b e. ( ( N Sat F ) ` Y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |