Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = (/) -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` (/) ) ) |
2 |
1
|
dmeqd |
|- ( x = (/) -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` (/) ) ) |
3 |
|
fveq2 |
|- ( x = (/) -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` (/) ) ) |
4 |
3
|
dmeqd |
|- ( x = (/) -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` (/) ) ) |
5 |
2 4
|
eqeq12d |
|- ( x = (/) -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) ) |
6 |
5
|
imbi2d |
|- ( x = (/) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) ) ) |
7 |
|
fveq2 |
|- ( x = y -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` y ) ) |
8 |
7
|
dmeqd |
|- ( x = y -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` y ) ) |
9 |
|
fveq2 |
|- ( x = y -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` y ) ) |
10 |
9
|
dmeqd |
|- ( x = y -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` y ) ) |
11 |
8 10
|
eqeq12d |
|- ( x = y -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) |
12 |
11
|
imbi2d |
|- ( x = y -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) ) |
13 |
|
fveq2 |
|- ( x = suc y -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` suc y ) ) |
14 |
13
|
dmeqd |
|- ( x = suc y -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` suc y ) ) |
15 |
|
fveq2 |
|- ( x = suc y -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` suc y ) ) |
16 |
15
|
dmeqd |
|- ( x = suc y -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` suc y ) ) |
17 |
14 16
|
eqeq12d |
|- ( x = suc y -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) |
18 |
17
|
imbi2d |
|- ( x = suc y -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) |
19 |
|
fveq2 |
|- ( x = n -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` n ) ) |
20 |
19
|
dmeqd |
|- ( x = n -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` n ) ) |
21 |
|
fveq2 |
|- ( x = n -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` n ) ) |
22 |
21
|
dmeqd |
|- ( x = n -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` n ) ) |
23 |
20 22
|
eqeq12d |
|- ( x = n -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) |
24 |
23
|
imbi2d |
|- ( x = n -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) ) |
25 |
|
rexcom4 |
|- ( E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
26 |
25
|
rexbii |
|- ( E. u e. _om E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
27 |
|
ovex |
|- ( M ^m _om ) e. _V |
28 |
27
|
rabex |
|- { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } e. _V |
29 |
28
|
isseti |
|- E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } |
30 |
|
ovex |
|- ( N ^m _om ) e. _V |
31 |
30
|
rabex |
|- { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } e. _V |
32 |
31
|
isseti |
|- E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } |
33 |
29 32
|
2th |
|- ( E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } <-> E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) |
34 |
33
|
anbi2i |
|- ( ( x = ( u e.g v ) /\ E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
35 |
|
19.42v |
|- ( E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
36 |
|
19.42v |
|- ( E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
37 |
34 35 36
|
3bitr4i |
|- ( E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
38 |
37
|
rexbii |
|- ( E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
39 |
38
|
rexbii |
|- ( E. u e. _om E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
40 |
|
rexcom4 |
|- ( E. u e. _om E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
41 |
26 39 40
|
3bitr3ri |
|- ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
42 |
|
rexcom4 |
|- ( E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
43 |
42
|
rexbii |
|- ( E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
44 |
41 43
|
bitri |
|- ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
45 |
|
rexcom4 |
|- ( E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
46 |
44 45
|
bitri |
|- ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
47 |
46
|
abbii |
|- { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } |
48 |
|
eqid |
|- ( M Sat E ) = ( M Sat E ) |
49 |
48
|
satfv0 |
|- ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` (/) ) = { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
50 |
49
|
dmeqd |
|- ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = dom { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
51 |
|
dmopab |
|- dom { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } |
52 |
50 51
|
eqtrdi |
|- ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
53 |
52
|
adantr |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
54 |
|
eqid |
|- ( N Sat F ) = ( N Sat F ) |
55 |
54
|
satfv0 |
|- ( ( N e. X /\ F e. Y ) -> ( ( N Sat F ) ` (/) ) = { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
56 |
55
|
dmeqd |
|- ( ( N e. X /\ F e. Y ) -> dom ( ( N Sat F ) ` (/) ) = dom { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
57 |
|
dmopab |
|- dom { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } |
58 |
56 57
|
eqtrdi |
|- ( ( N e. X /\ F e. Y ) -> dom ( ( N Sat F ) ` (/) ) = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
59 |
58
|
adantl |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( N Sat F ) ` (/) ) = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
60 |
47 53 59
|
3eqtr4a |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) |
61 |
|
pm2.27 |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) |
62 |
61
|
adantl |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) |
63 |
|
simpr |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) |
64 |
|
simprl |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( M e. V /\ E e. W ) ) |
65 |
|
simpl |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> y e. _om ) |
66 |
|
df-3an |
|- ( ( M e. V /\ E e. W /\ y e. _om ) <-> ( ( M e. V /\ E e. W ) /\ y e. _om ) ) |
67 |
64 65 66
|
sylanbrc |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( M e. V /\ E e. W /\ y e. _om ) ) |
68 |
|
satfdmlem |
|- ( ( ( M e. V /\ E e. W /\ y e. _om ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
69 |
67 68
|
sylan |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
70 |
|
simprr |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( N e. X /\ F e. Y ) ) |
71 |
|
df-3an |
|- ( ( N e. X /\ F e. Y /\ y e. _om ) <-> ( ( N e. X /\ F e. Y ) /\ y e. _om ) ) |
72 |
70 65 71
|
sylanbrc |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( N e. X /\ F e. Y /\ y e. _om ) ) |
73 |
|
id |
|- ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) |
74 |
73
|
eqcomd |
|- ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( N Sat F ) ` y ) = dom ( ( M Sat E ) ` y ) ) |
75 |
|
satfdmlem |
|- ( ( ( N e. X /\ F e. Y /\ y e. _om ) /\ dom ( ( N Sat F ) ` y ) = dom ( ( M Sat E ) ` y ) ) -> ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) -> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
76 |
72 74 75
|
syl2an |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) -> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
77 |
69 76
|
impbid |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
78 |
27
|
difexi |
|- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V |
79 |
78
|
isseti |
|- E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
80 |
79
|
biantru |
|- ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
81 |
80
|
bicomi |
|- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
82 |
81
|
rexbii |
|- ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
83 |
27
|
rabex |
|- { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V |
84 |
83
|
isseti |
|- E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
85 |
84
|
biantru |
|- ( x = A.g i ( 1st ` u ) <-> ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
86 |
85
|
bicomi |
|- ( ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> x = A.g i ( 1st ` u ) ) |
87 |
86
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om x = A.g i ( 1st ` u ) ) |
88 |
82 87
|
orbi12i |
|- ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
89 |
88
|
rexbii |
|- ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
90 |
30
|
difexi |
|- ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) e. _V |
91 |
90
|
isseti |
|- E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) |
92 |
91
|
biantru |
|- ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) <-> ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
93 |
92
|
bicomi |
|- ( ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) |
94 |
93
|
rexbii |
|- ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) |
95 |
30
|
rabex |
|- { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } e. _V |
96 |
95
|
isseti |
|- E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } |
97 |
96
|
biantru |
|- ( x = A.g i ( 1st ` a ) <-> ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
98 |
97
|
bicomi |
|- ( ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> x = A.g i ( 1st ` a ) ) |
99 |
98
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. i e. _om x = A.g i ( 1st ` a ) ) |
100 |
94 99
|
orbi12i |
|- ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) |
101 |
100
|
rexbii |
|- ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) |
102 |
77 89 101
|
3bitr4g |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) ) |
103 |
|
19.42v |
|- ( E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
104 |
103
|
bicomi |
|- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
105 |
104
|
rexbii |
|- ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` y ) E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
106 |
|
rexcom4 |
|- ( E. v e. ( ( M Sat E ) ` y ) E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
107 |
105 106
|
bitri |
|- ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
108 |
|
19.42v |
|- ( E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
109 |
108
|
bicomi |
|- ( ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
110 |
109
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
111 |
|
rexcom4 |
|- ( E. i e. _om E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
112 |
110 111
|
bitri |
|- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
113 |
107 112
|
orbi12i |
|- ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
114 |
|
19.43 |
|- ( E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
115 |
114
|
bicomi |
|- ( ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
116 |
113 115
|
bitri |
|- ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
117 |
116
|
rexbii |
|- ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` y ) E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
118 |
|
rexcom4 |
|- ( E. u e. ( ( M Sat E ) ` y ) E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
119 |
117 118
|
bitri |
|- ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
120 |
|
19.42v |
|- ( E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
121 |
120
|
bicomi |
|- ( ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
122 |
121
|
rexbii |
|- ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. b e. ( ( N Sat F ) ` y ) E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
123 |
|
rexcom4 |
|- ( E. b e. ( ( N Sat F ) ` y ) E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
124 |
122 123
|
bitri |
|- ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
125 |
|
19.42v |
|- ( E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
126 |
125
|
bicomi |
|- ( ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
127 |
126
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. i e. _om E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
128 |
|
rexcom4 |
|- ( E. i e. _om E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
129 |
127 128
|
bitri |
|- ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
130 |
124 129
|
orbi12i |
|- ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
131 |
|
19.43 |
|- ( E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
132 |
131
|
bicomi |
|- ( ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
133 |
130 132
|
bitri |
|- ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
134 |
133
|
rexbii |
|- ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
135 |
|
rexcom4 |
|- ( E. a e. ( ( N Sat F ) ` y ) E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
136 |
134 135
|
bitri |
|- ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
137 |
102 119 136
|
3bitr3g |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) ) |
138 |
137
|
abbidv |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> { x | E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) |
139 |
|
dmopab |
|- dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } |
140 |
|
dmopab |
|- dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } = { x | E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } |
141 |
138 139 140
|
3eqtr4g |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) |
142 |
63 141
|
uneq12d |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( dom ( ( M Sat E ) ` y ) u. dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( dom ( ( N Sat F ) ` y ) u. dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
143 |
|
dmun |
|- dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( dom ( ( M Sat E ) ` y ) u. dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
144 |
|
dmun |
|- dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) = ( dom ( ( N Sat F ) ` y ) u. dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) |
145 |
142 143 144
|
3eqtr4g |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
146 |
|
simpl |
|- ( ( M e. V /\ E e. W ) -> M e. V ) |
147 |
146
|
adantr |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> M e. V ) |
148 |
|
simpr |
|- ( ( M e. V /\ E e. W ) -> E e. W ) |
149 |
148
|
adantr |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> E e. W ) |
150 |
48
|
satfvsuc |
|- ( ( M e. V /\ E e. W /\ y e. _om ) -> ( ( M Sat E ) ` suc y ) = ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
151 |
147 149 65 150
|
syl2an23an |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( M Sat E ) ` suc y ) = ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
152 |
151
|
dmeqd |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
153 |
|
simprl |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> N e. X ) |
154 |
|
simprr |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> F e. Y ) |
155 |
54
|
satfvsuc |
|- ( ( N e. X /\ F e. Y /\ y e. _om ) -> ( ( N Sat F ) ` suc y ) = ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
156 |
153 154 65 155
|
syl2an23an |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( N Sat F ) ` suc y ) = ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
157 |
156
|
dmeqd |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> dom ( ( N Sat F ) ` suc y ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
158 |
152 157
|
eqeq12d |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) <-> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) ) |
159 |
158
|
adantr |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) <-> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) ) |
160 |
145 159
|
mpbird |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) |
161 |
160
|
ex |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) |
162 |
62 161
|
syld |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) |
163 |
162
|
ex |
|- ( y e. _om -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) |
164 |
163
|
com23 |
|- ( y e. _om -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) |
165 |
6 12 18 24 60 164
|
finds |
|- ( n e. _om -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) |
166 |
165
|
impcom |
|- ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) /\ n e. _om ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) |
167 |
166
|
ralrimiva |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) |