| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( x = (/) -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` (/) ) ) |
| 2 |
1
|
dmeqd |
|- ( x = (/) -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` (/) ) ) |
| 3 |
|
fveq2 |
|- ( x = (/) -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` (/) ) ) |
| 4 |
3
|
dmeqd |
|- ( x = (/) -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` (/) ) ) |
| 5 |
2 4
|
eqeq12d |
|- ( x = (/) -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) ) |
| 6 |
5
|
imbi2d |
|- ( x = (/) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) ) ) |
| 7 |
|
fveq2 |
|- ( x = y -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` y ) ) |
| 8 |
7
|
dmeqd |
|- ( x = y -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` y ) ) |
| 9 |
|
fveq2 |
|- ( x = y -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` y ) ) |
| 10 |
9
|
dmeqd |
|- ( x = y -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` y ) ) |
| 11 |
8 10
|
eqeq12d |
|- ( x = y -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) |
| 12 |
11
|
imbi2d |
|- ( x = y -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) ) |
| 13 |
|
fveq2 |
|- ( x = suc y -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` suc y ) ) |
| 14 |
13
|
dmeqd |
|- ( x = suc y -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` suc y ) ) |
| 15 |
|
fveq2 |
|- ( x = suc y -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` suc y ) ) |
| 16 |
15
|
dmeqd |
|- ( x = suc y -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` suc y ) ) |
| 17 |
14 16
|
eqeq12d |
|- ( x = suc y -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) |
| 18 |
17
|
imbi2d |
|- ( x = suc y -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) |
| 19 |
|
fveq2 |
|- ( x = n -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` n ) ) |
| 20 |
19
|
dmeqd |
|- ( x = n -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` n ) ) |
| 21 |
|
fveq2 |
|- ( x = n -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` n ) ) |
| 22 |
21
|
dmeqd |
|- ( x = n -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` n ) ) |
| 23 |
20 22
|
eqeq12d |
|- ( x = n -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) |
| 24 |
23
|
imbi2d |
|- ( x = n -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) ) |
| 25 |
|
rexcom4 |
|- ( E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
| 26 |
25
|
rexbii |
|- ( E. u e. _om E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
| 27 |
|
ovex |
|- ( M ^m _om ) e. _V |
| 28 |
27
|
rabex |
|- { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } e. _V |
| 29 |
28
|
isseti |
|- E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } |
| 30 |
|
ovex |
|- ( N ^m _om ) e. _V |
| 31 |
30
|
rabex |
|- { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } e. _V |
| 32 |
31
|
isseti |
|- E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } |
| 33 |
29 32
|
2th |
|- ( E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } <-> E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) |
| 34 |
33
|
anbi2i |
|- ( ( x = ( u e.g v ) /\ E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 35 |
|
19.42v |
|- ( E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
| 36 |
|
19.42v |
|- ( E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 37 |
34 35 36
|
3bitr4i |
|- ( E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 38 |
37
|
rexbii |
|- ( E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 39 |
38
|
rexbii |
|- ( E. u e. _om E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 40 |
|
rexcom4 |
|- ( E. u e. _om E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) |
| 41 |
26 39 40
|
3bitr3ri |
|- ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 42 |
|
rexcom4 |
|- ( E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 43 |
42
|
rexbii |
|- ( E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 44 |
41 43
|
bitri |
|- ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 45 |
|
rexcom4 |
|- ( E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 46 |
44 45
|
bitri |
|- ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) |
| 47 |
46
|
abbii |
|- { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } |
| 48 |
|
eqid |
|- ( M Sat E ) = ( M Sat E ) |
| 49 |
48
|
satfv0 |
|- ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` (/) ) = { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
| 50 |
49
|
dmeqd |
|- ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = dom { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
| 51 |
|
dmopab |
|- dom { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } |
| 52 |
50 51
|
eqtrdi |
|- ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
| 53 |
52
|
adantr |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) |
| 54 |
|
eqid |
|- ( N Sat F ) = ( N Sat F ) |
| 55 |
54
|
satfv0 |
|- ( ( N e. X /\ F e. Y ) -> ( ( N Sat F ) ` (/) ) = { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
| 56 |
55
|
dmeqd |
|- ( ( N e. X /\ F e. Y ) -> dom ( ( N Sat F ) ` (/) ) = dom { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
| 57 |
|
dmopab |
|- dom { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } |
| 58 |
56 57
|
eqtrdi |
|- ( ( N e. X /\ F e. Y ) -> dom ( ( N Sat F ) ` (/) ) = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
| 59 |
58
|
adantl |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( N Sat F ) ` (/) ) = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) |
| 60 |
47 53 59
|
3eqtr4a |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) |
| 61 |
|
pm2.27 |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) |
| 62 |
61
|
adantl |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) |
| 63 |
|
simpr |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) |
| 64 |
|
simprl |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( M e. V /\ E e. W ) ) |
| 65 |
|
simpl |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> y e. _om ) |
| 66 |
|
df-3an |
|- ( ( M e. V /\ E e. W /\ y e. _om ) <-> ( ( M e. V /\ E e. W ) /\ y e. _om ) ) |
| 67 |
64 65 66
|
sylanbrc |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( M e. V /\ E e. W /\ y e. _om ) ) |
| 68 |
|
satfdmlem |
|- ( ( ( M e. V /\ E e. W /\ y e. _om ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
| 69 |
67 68
|
sylan |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
| 70 |
|
simprr |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( N e. X /\ F e. Y ) ) |
| 71 |
|
df-3an |
|- ( ( N e. X /\ F e. Y /\ y e. _om ) <-> ( ( N e. X /\ F e. Y ) /\ y e. _om ) ) |
| 72 |
70 65 71
|
sylanbrc |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( N e. X /\ F e. Y /\ y e. _om ) ) |
| 73 |
|
id |
|- ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) |
| 74 |
73
|
eqcomd |
|- ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( N Sat F ) ` y ) = dom ( ( M Sat E ) ` y ) ) |
| 75 |
|
satfdmlem |
|- ( ( ( N e. X /\ F e. Y /\ y e. _om ) /\ dom ( ( N Sat F ) ` y ) = dom ( ( M Sat E ) ` y ) ) -> ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) -> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 76 |
72 74 75
|
syl2an |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) -> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 77 |
69 76
|
impbid |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) |
| 78 |
27
|
difexi |
|- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V |
| 79 |
78
|
isseti |
|- E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
| 80 |
79
|
biantru |
|- ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 81 |
80
|
bicomi |
|- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 82 |
81
|
rexbii |
|- ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 83 |
27
|
rabex |
|- { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V |
| 84 |
83
|
isseti |
|- E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
| 85 |
84
|
biantru |
|- ( x = A.g i ( 1st ` u ) <-> ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 86 |
85
|
bicomi |
|- ( ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> x = A.g i ( 1st ` u ) ) |
| 87 |
86
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om x = A.g i ( 1st ` u ) ) |
| 88 |
82 87
|
orbi12i |
|- ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 89 |
88
|
rexbii |
|- ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 90 |
30
|
difexi |
|- ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) e. _V |
| 91 |
90
|
isseti |
|- E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) |
| 92 |
91
|
biantru |
|- ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) <-> ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 93 |
92
|
bicomi |
|- ( ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) |
| 94 |
93
|
rexbii |
|- ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) |
| 95 |
30
|
rabex |
|- { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } e. _V |
| 96 |
95
|
isseti |
|- E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } |
| 97 |
96
|
biantru |
|- ( x = A.g i ( 1st ` a ) <-> ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 98 |
97
|
bicomi |
|- ( ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> x = A.g i ( 1st ` a ) ) |
| 99 |
98
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. i e. _om x = A.g i ( 1st ` a ) ) |
| 100 |
94 99
|
orbi12i |
|- ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) |
| 101 |
100
|
rexbii |
|- ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) |
| 102 |
77 89 101
|
3bitr4g |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) ) |
| 103 |
|
19.42v |
|- ( E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 104 |
103
|
bicomi |
|- ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 105 |
104
|
rexbii |
|- ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` y ) E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 106 |
|
rexcom4 |
|- ( E. v e. ( ( M Sat E ) ` y ) E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 107 |
105 106
|
bitri |
|- ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
| 108 |
|
19.42v |
|- ( E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 109 |
108
|
bicomi |
|- ( ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 110 |
109
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 111 |
|
rexcom4 |
|- ( E. i e. _om E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 112 |
110 111
|
bitri |
|- ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
| 113 |
107 112
|
orbi12i |
|- ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 114 |
|
19.43 |
|- ( E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 115 |
114
|
bicomi |
|- ( ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 116 |
113 115
|
bitri |
|- ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 117 |
116
|
rexbii |
|- ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` y ) E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 118 |
|
rexcom4 |
|- ( E. u e. ( ( M Sat E ) ` y ) E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 119 |
117 118
|
bitri |
|- ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
| 120 |
|
19.42v |
|- ( E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 121 |
120
|
bicomi |
|- ( ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 122 |
121
|
rexbii |
|- ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. b e. ( ( N Sat F ) ` y ) E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 123 |
|
rexcom4 |
|- ( E. b e. ( ( N Sat F ) ` y ) E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 124 |
122 123
|
bitri |
|- ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) |
| 125 |
|
19.42v |
|- ( E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 126 |
125
|
bicomi |
|- ( ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 127 |
126
|
rexbii |
|- ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. i e. _om E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 128 |
|
rexcom4 |
|- ( E. i e. _om E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 129 |
127 128
|
bitri |
|- ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) |
| 130 |
124 129
|
orbi12i |
|- ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 131 |
|
19.43 |
|- ( E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 132 |
131
|
bicomi |
|- ( ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 133 |
130 132
|
bitri |
|- ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 134 |
133
|
rexbii |
|- ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 135 |
|
rexcom4 |
|- ( E. a e. ( ( N Sat F ) ` y ) E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 136 |
134 135
|
bitri |
|- ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) |
| 137 |
102 119 136
|
3bitr3g |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) ) |
| 138 |
137
|
abbidv |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> { x | E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) |
| 139 |
|
dmopab |
|- dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } |
| 140 |
|
dmopab |
|- dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } = { x | E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } |
| 141 |
138 139 140
|
3eqtr4g |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) |
| 142 |
63 141
|
uneq12d |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( dom ( ( M Sat E ) ` y ) u. dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( dom ( ( N Sat F ) ` y ) u. dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 143 |
|
dmun |
|- dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( dom ( ( M Sat E ) ` y ) u. dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) |
| 144 |
|
dmun |
|- dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) = ( dom ( ( N Sat F ) ` y ) u. dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) |
| 145 |
142 143 144
|
3eqtr4g |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 146 |
|
simpl |
|- ( ( M e. V /\ E e. W ) -> M e. V ) |
| 147 |
146
|
adantr |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> M e. V ) |
| 148 |
|
simpr |
|- ( ( M e. V /\ E e. W ) -> E e. W ) |
| 149 |
148
|
adantr |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> E e. W ) |
| 150 |
48
|
satfvsuc |
|- ( ( M e. V /\ E e. W /\ y e. _om ) -> ( ( M Sat E ) ` suc y ) = ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 151 |
147 149 65 150
|
syl2an23an |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( M Sat E ) ` suc y ) = ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 152 |
151
|
dmeqd |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
| 153 |
|
simprl |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> N e. X ) |
| 154 |
|
simprr |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> F e. Y ) |
| 155 |
54
|
satfvsuc |
|- ( ( N e. X /\ F e. Y /\ y e. _om ) -> ( ( N Sat F ) ` suc y ) = ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 156 |
153 154 65 155
|
syl2an23an |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( N Sat F ) ` suc y ) = ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 157 |
156
|
dmeqd |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> dom ( ( N Sat F ) ` suc y ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) |
| 158 |
152 157
|
eqeq12d |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) <-> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) ) |
| 159 |
158
|
adantr |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) <-> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) ) |
| 160 |
145 159
|
mpbird |
|- ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) |
| 161 |
160
|
ex |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) |
| 162 |
62 161
|
syld |
|- ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) |
| 163 |
162
|
ex |
|- ( y e. _om -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) |
| 164 |
163
|
com23 |
|- ( y e. _om -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) |
| 165 |
6 12 18 24 60 164
|
finds |
|- ( n e. _om -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) |
| 166 |
165
|
impcom |
|- ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) /\ n e. _om ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) |
| 167 |
166
|
ralrimiva |
|- ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) |