| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( x = (/) -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` (/) ) ) | 
						
							| 2 | 1 | dmeqd |  |-  ( x = (/) -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` (/) ) ) | 
						
							| 3 |  | fveq2 |  |-  ( x = (/) -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` (/) ) ) | 
						
							| 4 | 3 | dmeqd |  |-  ( x = (/) -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` (/) ) ) | 
						
							| 5 | 2 4 | eqeq12d |  |-  ( x = (/) -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) ) | 
						
							| 6 | 5 | imbi2d |  |-  ( x = (/) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) ) ) | 
						
							| 7 |  | fveq2 |  |-  ( x = y -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` y ) ) | 
						
							| 8 | 7 | dmeqd |  |-  ( x = y -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` y ) ) | 
						
							| 9 |  | fveq2 |  |-  ( x = y -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` y ) ) | 
						
							| 10 | 9 | dmeqd |  |-  ( x = y -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` y ) ) | 
						
							| 11 | 8 10 | eqeq12d |  |-  ( x = y -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( x = y -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( x = suc y -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` suc y ) ) | 
						
							| 14 | 13 | dmeqd |  |-  ( x = suc y -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` suc y ) ) | 
						
							| 15 |  | fveq2 |  |-  ( x = suc y -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` suc y ) ) | 
						
							| 16 | 15 | dmeqd |  |-  ( x = suc y -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` suc y ) ) | 
						
							| 17 | 14 16 | eqeq12d |  |-  ( x = suc y -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) | 
						
							| 18 | 17 | imbi2d |  |-  ( x = suc y -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) | 
						
							| 19 |  | fveq2 |  |-  ( x = n -> ( ( M Sat E ) ` x ) = ( ( M Sat E ) ` n ) ) | 
						
							| 20 | 19 | dmeqd |  |-  ( x = n -> dom ( ( M Sat E ) ` x ) = dom ( ( M Sat E ) ` n ) ) | 
						
							| 21 |  | fveq2 |  |-  ( x = n -> ( ( N Sat F ) ` x ) = ( ( N Sat F ) ` n ) ) | 
						
							| 22 | 21 | dmeqd |  |-  ( x = n -> dom ( ( N Sat F ) ` x ) = dom ( ( N Sat F ) ` n ) ) | 
						
							| 23 | 20 22 | eqeq12d |  |-  ( x = n -> ( dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) <-> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) | 
						
							| 24 | 23 | imbi2d |  |-  ( x = n -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` x ) = dom ( ( N Sat F ) ` x ) ) <-> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) ) | 
						
							| 25 |  | rexcom4 |  |-  ( E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) | 
						
							| 26 | 25 | rexbii |  |-  ( E. u e. _om E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) | 
						
							| 27 |  | ovex |  |-  ( M ^m _om ) e. _V | 
						
							| 28 | 27 | rabex |  |-  { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } e. _V | 
						
							| 29 | 28 | isseti |  |-  E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } | 
						
							| 30 |  | ovex |  |-  ( N ^m _om ) e. _V | 
						
							| 31 | 30 | rabex |  |-  { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } e. _V | 
						
							| 32 | 31 | isseti |  |-  E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } | 
						
							| 33 | 29 32 | 2th |  |-  ( E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } <-> E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) | 
						
							| 34 | 33 | anbi2i |  |-  ( ( x = ( u e.g v ) /\ E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 35 |  | 19.42v |  |-  ( E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. y y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) | 
						
							| 36 |  | 19.42v |  |-  ( E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> ( x = ( u e.g v ) /\ E. z z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 37 | 34 35 36 | 3bitr4i |  |-  ( E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 38 | 37 | rexbii |  |-  ( E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 39 | 38 | rexbii |  |-  ( E. u e. _om E. v e. _om E. y ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 40 |  | rexcom4 |  |-  ( E. u e. _om E. y E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) ) | 
						
							| 41 | 26 39 40 | 3bitr3ri |  |-  ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 42 |  | rexcom4 |  |-  ( E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 43 | 42 | rexbii |  |-  ( E. u e. _om E. v e. _om E. z ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 44 | 41 43 | bitri |  |-  ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 45 |  | rexcom4 |  |-  ( E. u e. _om E. z E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) <-> E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 46 | 44 45 | bitri |  |-  ( E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) <-> E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) ) | 
						
							| 47 | 46 | abbii |  |-  { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } | 
						
							| 48 |  | eqid |  |-  ( M Sat E ) = ( M Sat E ) | 
						
							| 49 | 48 | satfv0 |  |-  ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` (/) ) = { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) | 
						
							| 50 | 49 | dmeqd |  |-  ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = dom { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) | 
						
							| 51 |  | dmopab |  |-  dom { <. x , y >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } | 
						
							| 52 | 50 51 | eqtrdi |  |-  ( ( M e. V /\ E e. W ) -> dom ( ( M Sat E ) ` (/) ) = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = { x | E. y E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ y = { a e. ( M ^m _om ) | ( a ` u ) E ( a ` v ) } ) } ) | 
						
							| 54 |  | eqid |  |-  ( N Sat F ) = ( N Sat F ) | 
						
							| 55 | 54 | satfv0 |  |-  ( ( N e. X /\ F e. Y ) -> ( ( N Sat F ) ` (/) ) = { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) | 
						
							| 56 | 55 | dmeqd |  |-  ( ( N e. X /\ F e. Y ) -> dom ( ( N Sat F ) ` (/) ) = dom { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) | 
						
							| 57 |  | dmopab |  |-  dom { <. x , z >. | E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } | 
						
							| 58 | 56 57 | eqtrdi |  |-  ( ( N e. X /\ F e. Y ) -> dom ( ( N Sat F ) ` (/) ) = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) | 
						
							| 59 | 58 | adantl |  |-  ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( N Sat F ) ` (/) ) = { x | E. z E. u e. _om E. v e. _om ( x = ( u e.g v ) /\ z = { a e. ( N ^m _om ) | ( a ` u ) F ( a ` v ) } ) } ) | 
						
							| 60 | 47 53 59 | 3eqtr4a |  |-  ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` (/) ) = dom ( ( N Sat F ) ` (/) ) ) | 
						
							| 61 |  | pm2.27 |  |-  ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) | 
						
							| 62 | 61 | adantl |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) ) | 
						
							| 63 |  | simpr |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) | 
						
							| 64 |  | simprl |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( M e. V /\ E e. W ) ) | 
						
							| 65 |  | simpl |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> y e. _om ) | 
						
							| 66 |  | df-3an |  |-  ( ( M e. V /\ E e. W /\ y e. _om ) <-> ( ( M e. V /\ E e. W ) /\ y e. _om ) ) | 
						
							| 67 | 64 65 66 | sylanbrc |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( M e. V /\ E e. W /\ y e. _om ) ) | 
						
							| 68 |  | satfdmlem |  |-  ( ( ( M e. V /\ E e. W /\ y e. _om ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) | 
						
							| 69 | 67 68 | sylan |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) | 
						
							| 70 |  | simprr |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( N e. X /\ F e. Y ) ) | 
						
							| 71 |  | df-3an |  |-  ( ( N e. X /\ F e. Y /\ y e. _om ) <-> ( ( N e. X /\ F e. Y ) /\ y e. _om ) ) | 
						
							| 72 | 70 65 71 | sylanbrc |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( N e. X /\ F e. Y /\ y e. _om ) ) | 
						
							| 73 |  | id |  |-  ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) | 
						
							| 74 | 73 | eqcomd |  |-  ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( N Sat F ) ` y ) = dom ( ( M Sat E ) ` y ) ) | 
						
							| 75 |  | satfdmlem |  |-  ( ( ( N e. X /\ F e. Y /\ y e. _om ) /\ dom ( ( N Sat F ) ` y ) = dom ( ( M Sat E ) ` y ) ) -> ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) -> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 76 | 72 74 75 | syl2an |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) -> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) | 
						
							| 77 | 69 76 | impbid |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) ) | 
						
							| 78 | 27 | difexi |  |-  ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V | 
						
							| 79 | 78 | isseti |  |-  E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) | 
						
							| 80 | 79 | biantru |  |-  ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 81 | 80 | bicomi |  |-  ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 82 | 81 | rexbii |  |-  ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) | 
						
							| 83 | 27 | rabex |  |-  { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } e. _V | 
						
							| 84 | 83 | isseti |  |-  E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } | 
						
							| 85 | 84 | biantru |  |-  ( x = A.g i ( 1st ` u ) <-> ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 86 | 85 | bicomi |  |-  ( ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> x = A.g i ( 1st ` u ) ) | 
						
							| 87 | 86 | rexbii |  |-  ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om x = A.g i ( 1st ` u ) ) | 
						
							| 88 | 82 87 | orbi12i |  |-  ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) | 
						
							| 89 | 88 | rexbii |  |-  ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) | 
						
							| 90 | 30 | difexi |  |-  ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) e. _V | 
						
							| 91 | 90 | isseti |  |-  E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) | 
						
							| 92 | 91 | biantru |  |-  ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) <-> ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) | 
						
							| 93 | 92 | bicomi |  |-  ( ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) | 
						
							| 94 | 93 | rexbii |  |-  ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) ) | 
						
							| 95 | 30 | rabex |  |-  { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } e. _V | 
						
							| 96 | 95 | isseti |  |-  E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } | 
						
							| 97 | 96 | biantru |  |-  ( x = A.g i ( 1st ` a ) <-> ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) | 
						
							| 98 | 97 | bicomi |  |-  ( ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> x = A.g i ( 1st ` a ) ) | 
						
							| 99 | 98 | rexbii |  |-  ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. i e. _om x = A.g i ( 1st ` a ) ) | 
						
							| 100 | 94 99 | orbi12i |  |-  ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) | 
						
							| 101 | 100 | rexbii |  |-  ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) x = ( ( 1st ` a ) |g ( 1st ` b ) ) \/ E. i e. _om x = A.g i ( 1st ` a ) ) ) | 
						
							| 102 | 77 89 101 | 3bitr4g |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) ) | 
						
							| 103 |  | 19.42v |  |-  ( E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 104 | 103 | bicomi |  |-  ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 105 | 104 | rexbii |  |-  ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. ( ( M Sat E ) ` y ) E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 106 |  | rexcom4 |  |-  ( E. v e. ( ( M Sat E ) ` y ) E. w ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 107 | 105 106 | bitri |  |-  ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) | 
						
							| 108 |  | 19.42v |  |-  ( E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 109 | 108 | bicomi |  |-  ( ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 110 | 109 | rexbii |  |-  ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 111 |  | rexcom4 |  |-  ( E. i e. _om E. w ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 112 | 110 111 | bitri |  |-  ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) | 
						
							| 113 | 107 112 | orbi12i |  |-  ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 114 |  | 19.43 |  |-  ( E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 115 | 114 | bicomi |  |-  ( ( E. w E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. w E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 116 | 113 115 | bitri |  |-  ( ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 117 | 116 | rexbii |  |-  ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. ( ( M Sat E ) ` y ) E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 118 |  | rexcom4 |  |-  ( E. u e. ( ( M Sat E ) ` y ) E. w ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 119 | 117 118 | bitri |  |-  ( E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ E. w w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ E. w w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) | 
						
							| 120 |  | 19.42v |  |-  ( E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) | 
						
							| 121 | 120 | bicomi |  |-  ( ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) | 
						
							| 122 | 121 | rexbii |  |-  ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. b e. ( ( N Sat F ) ` y ) E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) | 
						
							| 123 |  | rexcom4 |  |-  ( E. b e. ( ( N Sat F ) ` y ) E. z ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) | 
						
							| 124 | 122 123 | bitri |  |-  ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) <-> E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) ) | 
						
							| 125 |  | 19.42v |  |-  ( E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) | 
						
							| 126 | 125 | bicomi |  |-  ( ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) | 
						
							| 127 | 126 | rexbii |  |-  ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. i e. _om E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) | 
						
							| 128 |  | rexcom4 |  |-  ( E. i e. _om E. z ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) | 
						
							| 129 | 127 128 | bitri |  |-  ( E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) <-> E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) | 
						
							| 130 | 124 129 | orbi12i |  |-  ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) | 
						
							| 131 |  | 19.43 |  |-  ( E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) | 
						
							| 132 | 131 | bicomi |  |-  ( ( E. z E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. z E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) | 
						
							| 133 | 130 132 | bitri |  |-  ( ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) | 
						
							| 134 | 133 | rexbii |  |-  ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. a e. ( ( N Sat F ) ` y ) E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) | 
						
							| 135 |  | rexcom4 |  |-  ( E. a e. ( ( N Sat F ) ` y ) E. z ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) | 
						
							| 136 | 134 135 | bitri |  |-  ( E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ E. z z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ E. z z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) | 
						
							| 137 | 102 119 136 | 3bitr3g |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) ) ) | 
						
							| 138 | 137 | abbidv |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> { x | E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) | 
						
							| 139 |  | dmopab |  |-  dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { x | E. w E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } | 
						
							| 140 |  | dmopab |  |-  dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } = { x | E. z E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } | 
						
							| 141 | 138 139 140 | 3eqtr4g |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) | 
						
							| 142 | 63 141 | uneq12d |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( dom ( ( M Sat E ) ` y ) u. dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( dom ( ( N Sat F ) ` y ) u. dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) | 
						
							| 143 |  | dmun |  |-  dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = ( dom ( ( M Sat E ) ` y ) u. dom { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) | 
						
							| 144 |  | dmun |  |-  dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) = ( dom ( ( N Sat F ) ` y ) u. dom { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) | 
						
							| 145 | 142 143 144 | 3eqtr4g |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) | 
						
							| 146 |  | simpl |  |-  ( ( M e. V /\ E e. W ) -> M e. V ) | 
						
							| 147 | 146 | adantr |  |-  ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> M e. V ) | 
						
							| 148 |  | simpr |  |-  ( ( M e. V /\ E e. W ) -> E e. W ) | 
						
							| 149 | 148 | adantr |  |-  ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> E e. W ) | 
						
							| 150 | 48 | satfvsuc |  |-  ( ( M e. V /\ E e. W /\ y e. _om ) -> ( ( M Sat E ) ` suc y ) = ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 151 | 147 149 65 150 | syl2an23an |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( M Sat E ) ` suc y ) = ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 152 | 151 | dmeqd |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) | 
						
							| 153 |  | simprl |  |-  ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> N e. X ) | 
						
							| 154 |  | simprr |  |-  ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> F e. Y ) | 
						
							| 155 | 54 | satfvsuc |  |-  ( ( N e. X /\ F e. Y /\ y e. _om ) -> ( ( N Sat F ) ` suc y ) = ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) | 
						
							| 156 | 153 154 65 155 | syl2an23an |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( N Sat F ) ` suc y ) = ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) | 
						
							| 157 | 156 | dmeqd |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> dom ( ( N Sat F ) ` suc y ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) | 
						
							| 158 | 152 157 | eqeq12d |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) <-> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) ) | 
						
							| 159 | 158 | adantr |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) <-> dom ( ( ( M Sat E ) ` y ) u. { <. x , w >. | E. u e. ( ( M Sat E ) ` y ) ( E. v e. ( ( M Sat E ) ` y ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ w = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ w = { m e. ( M ^m _om ) | A. f e. M ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) = dom ( ( ( N Sat F ) ` y ) u. { <. x , z >. | E. a e. ( ( N Sat F ) ` y ) ( E. b e. ( ( N Sat F ) ` y ) ( x = ( ( 1st ` a ) |g ( 1st ` b ) ) /\ z = ( ( N ^m _om ) \ ( ( 2nd ` a ) i^i ( 2nd ` b ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` a ) /\ z = { m e. ( N ^m _om ) | A. f e. N ( { <. i , f >. } u. ( m |` ( _om \ { i } ) ) ) e. ( 2nd ` a ) } ) ) } ) ) ) | 
						
							| 160 | 145 159 | mpbird |  |-  ( ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) /\ dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) | 
						
							| 161 | 160 | ex |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) | 
						
							| 162 | 62 161 | syld |  |-  ( ( y e. _om /\ ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) | 
						
							| 163 | 162 | ex |  |-  ( y e. _om -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) | 
						
							| 164 | 163 | com23 |  |-  ( y e. _om -> ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` y ) = dom ( ( N Sat F ) ` y ) ) -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` suc y ) = dom ( ( N Sat F ) ` suc y ) ) ) ) | 
						
							| 165 | 6 12 18 24 60 164 | finds |  |-  ( n e. _om -> ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) ) | 
						
							| 166 | 165 | impcom |  |-  ( ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) /\ n e. _om ) -> dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) | 
						
							| 167 | 166 | ralrimiva |  |-  ( ( ( M e. V /\ E e. W ) /\ ( N e. X /\ F e. Y ) ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( N Sat F ) ` n ) ) |