| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcom2 |  |-  ( [ y / x ] [ v / w ] [ w / y ] ph <-> [ v / w ] [ y / x ] [ w / y ] ph ) | 
						
							| 2 | 1 | sbbii |  |-  ( [ x / v ] [ y / x ] [ v / w ] [ w / y ] ph <-> [ x / v ] [ v / w ] [ y / x ] [ w / y ] ph ) | 
						
							| 3 |  | sbco2vv |  |-  ( [ v / w ] [ w / y ] ph <-> [ v / y ] ph ) | 
						
							| 4 | 3 | 2sbbii |  |-  ( [ x / v ] [ y / x ] [ v / w ] [ w / y ] ph <-> [ x / v ] [ y / x ] [ v / y ] ph ) | 
						
							| 5 |  | sbco2vv |  |-  ( [ x / v ] [ v / w ] [ y / x ] [ w / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) | 
						
							| 6 | 2 4 5 | 3bitr3i |  |-  ( [ x / v ] [ y / x ] [ v / y ] ph <-> [ x / w ] [ y / x ] [ w / y ] ph ) |