Metamath Proof Explorer


Theorem sbcop1

Description: The proper substitution of an ordered pair for a setvar variable corresponds to a proper substitution of its first component. (Contributed by AV, 8-Apr-2023)

Ref Expression
Hypothesis sbcop.z
|- ( z = <. x , y >. -> ( ph <-> ps ) )
Assertion sbcop1
|- ( [. a / x ]. ps <-> [. <. a , y >. / z ]. ph )

Proof

Step Hyp Ref Expression
1 sbcop.z
 |-  ( z = <. x , y >. -> ( ph <-> ps ) )
2 sbc5
 |-  ( [. a / x ]. ps <-> E. x ( x = a /\ ps ) )
3 opeq1
 |-  ( a = x -> <. a , y >. = <. x , y >. )
4 3 equcoms
 |-  ( x = a -> <. a , y >. = <. x , y >. )
5 4 eqeq2d
 |-  ( x = a -> ( z = <. a , y >. <-> z = <. x , y >. ) )
6 1 biimprd
 |-  ( z = <. x , y >. -> ( ps -> ph ) )
7 5 6 syl6bi
 |-  ( x = a -> ( z = <. a , y >. -> ( ps -> ph ) ) )
8 7 com23
 |-  ( x = a -> ( ps -> ( z = <. a , y >. -> ph ) ) )
9 8 imp
 |-  ( ( x = a /\ ps ) -> ( z = <. a , y >. -> ph ) )
10 9 exlimiv
 |-  ( E. x ( x = a /\ ps ) -> ( z = <. a , y >. -> ph ) )
11 2 10 sylbi
 |-  ( [. a / x ]. ps -> ( z = <. a , y >. -> ph ) )
12 11 alrimiv
 |-  ( [. a / x ]. ps -> A. z ( z = <. a , y >. -> ph ) )
13 opex
 |-  <. a , y >. e. _V
14 13 sbc6
 |-  ( [. <. a , y >. / z ]. ph <-> A. z ( z = <. a , y >. -> ph ) )
15 12 14 sylibr
 |-  ( [. a / x ]. ps -> [. <. a , y >. / z ]. ph )
16 sbc5
 |-  ( [. <. a , y >. / z ]. ph <-> E. z ( z = <. a , y >. /\ ph ) )
17 1 biimpd
 |-  ( z = <. x , y >. -> ( ph -> ps ) )
18 5 17 syl6bi
 |-  ( x = a -> ( z = <. a , y >. -> ( ph -> ps ) ) )
19 18 com3l
 |-  ( z = <. a , y >. -> ( ph -> ( x = a -> ps ) ) )
20 19 imp
 |-  ( ( z = <. a , y >. /\ ph ) -> ( x = a -> ps ) )
21 20 alrimiv
 |-  ( ( z = <. a , y >. /\ ph ) -> A. x ( x = a -> ps ) )
22 vex
 |-  a e. _V
23 22 sbc6
 |-  ( [. a / x ]. ps <-> A. x ( x = a -> ps ) )
24 21 23 sylibr
 |-  ( ( z = <. a , y >. /\ ph ) -> [. a / x ]. ps )
25 24 exlimiv
 |-  ( E. z ( z = <. a , y >. /\ ph ) -> [. a / x ]. ps )
26 16 25 sylbi
 |-  ( [. <. a , y >. / z ]. ph -> [. a / x ]. ps )
27 15 26 impbii
 |-  ( [. a / x ]. ps <-> [. <. a , y >. / z ]. ph )