| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbthlem.1 |
|- A e. _V |
| 2 |
|
sbthlem.2 |
|- D = { x | ( x C_ A /\ ( g " ( B \ ( f " x ) ) ) C_ ( A \ x ) ) } |
| 3 |
|
df-ima |
|- ( `' g " ( A \ U. D ) ) = ran ( `' g |` ( A \ U. D ) ) |
| 4 |
|
difss |
|- ( B \ ( f " U. D ) ) C_ B |
| 5 |
|
sseq2 |
|- ( dom g = B -> ( ( B \ ( f " U. D ) ) C_ dom g <-> ( B \ ( f " U. D ) ) C_ B ) ) |
| 6 |
4 5
|
mpbiri |
|- ( dom g = B -> ( B \ ( f " U. D ) ) C_ dom g ) |
| 7 |
|
ssdmres |
|- ( ( B \ ( f " U. D ) ) C_ dom g <-> dom ( g |` ( B \ ( f " U. D ) ) ) = ( B \ ( f " U. D ) ) ) |
| 8 |
6 7
|
sylib |
|- ( dom g = B -> dom ( g |` ( B \ ( f " U. D ) ) ) = ( B \ ( f " U. D ) ) ) |
| 9 |
|
dfdm4 |
|- dom ( g |` ( B \ ( f " U. D ) ) ) = ran `' ( g |` ( B \ ( f " U. D ) ) ) |
| 10 |
8 9
|
eqtr3di |
|- ( dom g = B -> ( B \ ( f " U. D ) ) = ran `' ( g |` ( B \ ( f " U. D ) ) ) ) |
| 11 |
|
funcnvres |
|- ( Fun `' g -> `' ( g |` ( B \ ( f " U. D ) ) ) = ( `' g |` ( g " ( B \ ( f " U. D ) ) ) ) ) |
| 12 |
1 2
|
sbthlem3 |
|- ( ran g C_ A -> ( g " ( B \ ( f " U. D ) ) ) = ( A \ U. D ) ) |
| 13 |
12
|
reseq2d |
|- ( ran g C_ A -> ( `' g |` ( g " ( B \ ( f " U. D ) ) ) ) = ( `' g |` ( A \ U. D ) ) ) |
| 14 |
11 13
|
sylan9eqr |
|- ( ( ran g C_ A /\ Fun `' g ) -> `' ( g |` ( B \ ( f " U. D ) ) ) = ( `' g |` ( A \ U. D ) ) ) |
| 15 |
14
|
rneqd |
|- ( ( ran g C_ A /\ Fun `' g ) -> ran `' ( g |` ( B \ ( f " U. D ) ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
| 16 |
10 15
|
sylan9eq |
|- ( ( dom g = B /\ ( ran g C_ A /\ Fun `' g ) ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
| 17 |
16
|
anassrs |
|- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( B \ ( f " U. D ) ) = ran ( `' g |` ( A \ U. D ) ) ) |
| 18 |
3 17
|
eqtr4id |
|- ( ( ( dom g = B /\ ran g C_ A ) /\ Fun `' g ) -> ( `' g " ( A \ U. D ) ) = ( B \ ( f " U. D ) ) ) |