Metamath Proof Explorer


Theorem scottn0f

Description: A version of scott0f with inequalities instead of equalities. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses scottn0f.1
|- F/_ y A
scottn0f.2
|- F/_ x A
Assertion scottn0f
|- ( A =/= (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } =/= (/) )

Proof

Step Hyp Ref Expression
1 scottn0f.1
 |-  F/_ y A
2 scottn0f.2
 |-  F/_ x A
3 1 2 scott0f
 |-  ( A = (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } = (/) )
4 3 necon3bii
 |-  ( A =/= (/) <-> { x e. A | A. y e. A ( rank ` x ) C_ ( rank ` y ) } =/= (/) )